Answer: Use Question cove you can get it faster you can get the answer faster! ;) hope this helps ;) but yeah use that and answer is done right away
Explanation: HOPE THIS HELPSS!! ;))
Answer:
copper will have more change in temperature as compare with aluminum
Explanation:
Hot piece of copper is made in contact with cold piece of aluminium
So here thermal energy transfer will take place from copper to aluminium
so by energy conservation we can say that heat given by copper is same as the heat absorbed by aluminium.
now we have

here we know that
= specific heat capacity of copper
= specific heat capacity of aluminum
given that specific heat capacity of aluminium is more than double that of copper
so we can say

so here if the mass of copper and aluminium is same then

so temperature change of copper is twice the temperature change of aluminium
So copper will have more change in temperature as compare with aluminum
<span>
The purpose of a gasoline car engine is to convert gasoline into motion
so that your car can move. Currently the easiest way to create motion
from gasoline is to burn the gasoline inside an engine.
Therefore, a car engine is an internal combustion engine -- combustion takes place internally.
There is such a thing as an external combustion engine. A steam engine
in old-fashioned trains and steam boats is the best example of an
external combustion engine. The fuel (coal, wood, oil, whatever) in a
steam engine burns outside the engine to create steam, and the steam
creates motion inside the engine. Internal combustion is a lot more
efficient (takes less fuel per mile) than external combustion, plus an
internal combustion engine is a lot smaller than an equivalent external
combustion engine. This explains why we don't see any cars using steam
engines.
To understand the basic idea behind how a reciprocating internal
combustion engine works, it is helpful to have a good mental image of
how "internal combustion" works.
One good example is an old Revolutionary War cannon. You have probably
seen these in movies, where the soldiers load the cannon with gun powder
and a cannon ball and light it. That is internal combustion, but it is
hard to imagine that having anything to do with engines.
A potato cannon uses the basic principle behind any reciprocating
internal combustion engine: If you put a tiny amount of high-energy fuel
(like gasoline) in a small, enclosed space and ignite it, an incredible
amount of energy is released in the form of expanding gas. You can use
that energy to propel a potato 500 feet. In this case, the energy is
translated into potato motion. You can also use it for more interesting
purposes. For example, if you can create a cycle that allows you to set
off explosions like this hundreds of times per minute, and if you can
harness that energy in a useful way, what you have is the core of a car
engine! </span>
Answer:
6N
Explanation:
Given parameters:
Pressure applied by the woman = 300N/m²
Area = 0.02m²
Unknown:
Force applied = ?
Solution:
Pressure is the force per unit area on a body
Pressure =
Force = Pressure x area
Force = 300 x 0.02 = 6N
Answer:
the length of the wire is 134.62 m.
Explanation:
Given;
resistivity of the copper wire, ρ = 2.6 x 10⁻⁸ Ωm
cross-sectional area of the wire, A = 35 x 10⁻⁴ cm² = ( 35 x 10⁻⁴) x 10⁻⁴ m²
resistance of the wire, R = 10Ω
The length of the wire is calculated as follows;

Therefore, the length of the wire is 134.62 m.