2.B
4.C
3.D
1.C
5.C
Theses are the right answer
The velocity of the second glider after the collision is 4.33 m/s rightward.
<h3>
Velocity of the second glider after the collision</h3>
Apply the principle of conservation of linear momentum;
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
where;
- m₁ is mass of first glider
- m₂ is mass of second glider
- u₁ is initial velocity of first glider
- u₂ is initial velocity of second glider
- v is the final velocity of the gliders
(2)(1) + (3)(5) = (2)(2) + 3v₂
17 = 4 + 3v₂
3v₂ = 17 - 4
3v₂ = 13
v₂ = 13/3
v₂ = 4.33 m/s
Thus, the velocity of the second glider after the collision is 4.33 m/s rightward.
Learn more about linear momentum here: brainly.com/question/7538238
#SPJ1
Answer:
Explanation:
The impulse equation is
Δp = FΔt, where Δp = final momentum - initial momentum, F is the Force exerted on an object, and Δt is the change in time. In this equation,the entire right side defines the impulse. In other words, FΔt is the impulse; thus the change in momentum an object experiences is due to its change in impulse and is directly proportional to it.
Therefore, once we find the change in momentum, that is the impulse the object experiences. Δp = final momentum - initial momentum, where
p = mv and p is momentum.
so
and
so
; therefore,
Δp = 25.0 - 17.5 = 7.5
which is the unit for momentum
Answer:
Explanation:
From the given information:
The difference in the maximum energy stored is can be determined by finding the difference in the maximum stored energy in the sprinters and that of the non-athlete:




Depending on the kind of electromagnetic field, nothing will happen.