Answer:
I = 0.25 [amp]
Explanation:
To solve this problem we must use ohm's law which tells us that the voltage is equal to the product of the current by the resistance.
V = I*R
where:
V = voltage [Volt]
I = amperage or current [amp]
R = resistance [ohm]
Since all resistors are connected in series, the total resistance will be equal to the arithmetic sum of all resistors.
Rt = 2 + 8 + 14
Rt = 24 [ohm]
Now clearing I for amperage
I = V/Rt
I = 6/24
I = 0.25 [amp].
Answer:

Explanation:
As we know that system of two boxes are moving on frictionless surface
So here if two boxes are considered as a system
then we have






Now since we know that both the boxes are moving together so force applied by first box on other box is given as



Answer:
acceleration = 0.022 m/s^2
distance = 8.3 x 10^7 m
speed = 1.9 x 10 ^3 m/s
Explanation:
the parameters given are:
mass = 900kg
force = 20N
- from the formula force = mass x acceleration
acceleration = force / mass
acceleration = 20 / 900
acceleration = 0.022 m/s^2
- distance travelled in 1 day (86,400 seconds) = (1/2) x a x t^2
(1/2) x 0.022 x (86,400^2) = 8.3 x 10^7 m
- speed of the sun yatch (v) = a x t
0.22 x 86400 = 1.9 x 10 ^3 m/s
Answer:
Explanation:
Given
W amount of work is done on the system such that it acquires v velocity after operation(initial velocity)
According to work energy theorem work done by all the forces is equal to change in kinetic energy of object

where m=mass of object
v=velocity of object
When the object is already have velocity v then the final speed is given by work energy theorem

From 1 and 2 we get



Power is the ratio between energy and time:

In our problem we have E=76 J and t=3.7 s. Therefore, the power is