Answer: 5.41 V
Explanation:in order to explain this result we have to use the Ohm law given by:
ΔV=R*I where R is the resistance which is equal R= ρ*L/A . ρ is the resistivity, L the length of the wire and A is the cross section. I is the current.
Then we have
ΔV=ρ*L*I/A= 1.68 * 10^-8 Ωm*93.4 m*72.5A/2.1* 10^-5 m^2=5.41 V
Answer:
B = 1.353 x 10⁻³ T
Explanation:
The Magnetic field within a toroid is given by
B = μ₀ NI/2πr, where N is the number of turns of the wire, μ₀ is the permeability of free space, I is the current in each turn and r is the distance at which the magnetic field is to be determined from the center of the toroid.
To find r we need to add the inner radius and outer radius and divide the value by 2. Hence,
r = (a + b)/2, where a is the inner radius and b is the outer radius which can be found by adding the length of a square section to the inner radius.
b = 25.1 + 3 = 28.1 cm
a = 25.1 cm
r = (25.1 + 28.1)/2 = 26.6 cm = 0.266m
B = 4π x 10⁻⁷ x 600 x 3/2π x 0.266
B = 1.353 x 10⁻³ T
The strength of the magnetic field at the center of the square cross section is 1.3 x 10⁻³ T
<span>B: adds aesthetic value to the landscape. Think about it, out of all your options, that's the one that doesn't really help anything.
And I took the test, so take my word for it.</span>
Answer: 0.091 m
Explanation:
r = 1/B * √(2mV/e), where
r = radius of their circular path
B = magnitude of magnetic field = 1.29 T
m = mass of Uranium -238 ion = 238 * amu = 238 * 1.6*10^-27 kg
V = potential difference = 2.9 kV
e = charge of the Uranium -238 ion = 1.6*10^-19 C
r = 1/1.29 * √[(2 * 238 * 1.6*10^-27 * 2900) / 1.6*10^-19]
r = 1/1.29 * √(2.21*10^-21 / 1.6*10^-19)
r = 1/1.29 * √0.0138
r = 1/1.29 * 0.117
r = 0.091 m
Therefore, the radius of their circular path is 0.091 m
The first one is: head
Second one is: 10 trillion km