1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa86 [58]
3 years ago
14

What is the pitch circle diameter of a 50-tooth spur gear having a circular pitch of 0.375 inch

Engineering
1 answer:
Dmitrij [34]3 years ago
4 0

Answer:

Pitch circle diameter = 5,66 inch

Explanation:

<u>According to the pitch circle diameter formula</u>

      <em>Dc= Dp - 2b</em> ; where Dp= primitive diameter, b= dedendum of the tooth and also the dedendum formula is b= 1,25 Pc/π.

     The definition of primitive diameter is equal to (Pc*Z)/π ; Pc= circular pitch and Z= number of teeths.

    <u>Replacing in the formula </u>

        ⇒ Dc= (Pc*Z)/π - 2* 1,25 Pc/π,    Pc= 0,375 ; Z=50

  In conclusion the pitch circle diameter is equal to:

            Dc= 5,66 inch.      

   

         

<h3>           </h3>

 

   

You might be interested in
Describe, in a general form, the equation, in time domain, that tells the voltage across a inductor, L, as a function of time wh
love history [14]

Answer:

a) V(t) = Ldi(t)/dt

b) If current is constant, V = 0

Explanation:

a) The voltage, V(t), across an inductor is proportional to the rate of change of the current flowing across it with time.

If  V represents the Voltage across the inductor

and i(t) represents the current across the inductor in time, t.

V(t) ∝ di(t)/dt

Introducing a proportionality constant,L, which is the inductance of the inductor

The general equation describing the voltage across the inductor of inductance, L, as a function of time when a current flows through it is shown below.

V(t) = Ldi(t)/dt ..................................................(1)

b) If the current flowing through the inductor is constant i.e. does not vary with time

di(t)/dt = 0   and hence the general equation (1) above becomes

V(t) = 0

4 0
4 years ago
Which statement about lean manufacturing is true when you compare it to mass production?
Len [333]
Where are the statements then bbs lol
6 0
3 years ago
A charge of +2.00 μC is at the origin and a charge of –3.00 μC is on the y axis at y = 40.0 cm . (a) What is the potential at po
Nimfa-mama [501]

a) Potential in A: -2700 V

b) Potential difference: -26,800 V

c) Work: 4.3\cdot 10^{-15} J

Explanation:

a)

The electric potential at a distance r from a single-point charge is given by:

V(r)=\frac{kq}{r}

where

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q is the charge

r is the distance from the charge

In this problem, we have a system of two charges, so the total potential at a certain point will be given by the algebraic sum of the two potentials.

Charge 1 is

q_1=+2.00\mu C=+2.00\cdot 10^{-6}C

and is located at the origin (x=0, y=0)

Charge 2 is

q_2=-3.00 \mu C=-3.00\cdot 10^{-6}C

and is located at (x=0, y = 0.40 m)

Point A is located at (x = 0.40 m, y = 0)

The distance of point A from charge 1 is

r_{1A}=0.40 m

So the potential due to charge 2 is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.40}=+4.50\cdot 10^4 V

The distance of point A from charge 2 is

r_{2A}=\sqrt{0.40^2+0.40^2}=0.566 m

So the potential due to charge 1 is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.566}=-4.77\cdot 10^4 V

Therefore, the net potential at point A is

V_A=V_1+V_2=+4.50\cdot 10^4 - 4.77\cdot 10^4=-2700 V

b)

Here we have to calculate the net potential at point B, located at

(x = 0.40 m, y = 0.30 m)

The distance of charge 1 from point B is

r_{1B}=\sqrt{(0.40)^2+(0.30)^2}=0.50 m

So the potential due to charge 1 at point B is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.50}=+3.60\cdot 10^4 V

The distance of charge 2 from point B is

r_{2B}=\sqrt{(0.40)^2+(0.40-0.30)^2}=0.412 m

So the potential due to charge 2 at point B is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.412}=-6.55\cdot 10^4 V

Therefore, the net potential at point B is

V_B=V_1+V_2=+3.60\cdot 10^4 -6.55\cdot 10^4 = -29,500 V

So the potential difference is

V_B-V_A=-29,500 V-(-2700 V)=-26,800 V

c)

The work required to move a charged particle across a potential difference is equal to its change of electric potential energy, and it is given by

W=q\Delta V

where

q is the charge of the particle

\Delta V is the potential difference

In this problem, we have:

q=-1.6\cdot 10^{-19}C is the charge of the electron

\Delta V=-26,800 V is the potential difference

Therefore, the work required on the electron is

W=(-1.6\cdot 10^{-19})(-26,800)=4.3\cdot 10^{-15} J

4 0
3 years ago
Two common methods of improving fuel efficiency of a vehicle are to reduce the drag coefficient and the frontal area of the vehi
qaws [65]

Answer:

\Delta V = 209.151\,L, \Delta C = 217.517\,USD

Explanation:

The drag force is equal to:

F_{D} = C_{D}\cdot \frac{1}{2}\cdot \rho_{air}\cdot v^{2}\cdot A

Where C_{D} is the drag coefficient and A is the frontal area, respectively. The work loss due to drag forces is:

W = F_{D}\cdot \Delta s

The reduction on amount of fuel is associated with the reduction in work loss:

\Delta W = (F_{D,1} - F_{D,2})\cdot \Delta s

Where F_{D,1} and F_{D,2} are the original and the reduced frontal areas, respectively.

\Delta W = C_{D}\cdot \frac{1}{2}\cdot \rho_{air}\cdot v^{2}\cdot (A_{1}-A_{2})\cdot \Delta s

The change is work loss in a year is:

\Delta W = (0.3)\cdot \left(\frac{1}{2}\right)\cdot (1.20\,\frac{kg}{m^{3}})\cdot (27.778\,\frac{m}{s})^{2}\cdot [(1.85\,m)\cdot (1.75\,m) - (1.50\,m)\cdot (1.75\,m)]\cdot (25\times 10^{6}\,m)

\Delta W = 2.043\times 10^{9}\,J

\Delta W = 2.043\times 10^{6}\,kJ

The change in chemical energy from gasoline is:

\Delta E = \frac{\Delta W}{\eta}

\Delta E = \frac{2.043\times 10^{6}\,kJ}{0.3}

\Delta E = 6.81\times 10^{6}\,kJ

The changes in gasoline consumption is:

\Delta m = \frac{\Delta E}{L_{c}}

\Delta m = \frac{6.81\times 10^{6}\,kJ}{44000\,\frac{kJ}{kg} }

\Delta m = 154.772\,kg

\Delta V = \frac{154.772\,kg}{0.74\,\frac{kg}{L} }

\Delta V = 209.151\,L

Lastly, the money saved is:

\Delta C = \left(\frac{154.772\,kg}{0.74\,\frac{kg}{L} }\right)\cdot (1.04\,\frac{USD}{L} )

\Delta C = 217.517\,USD

4 0
3 years ago
What does this middle button on the middle of my Chevrolet equinox steering wheel mean?
almond37 [142]

Answer:

Depending on how new your vehicle is, to me it looks like some sort of turn on button for forward collision safety feature, but i'm not an expert with this particular vehicle. If you want a better answer, I strongly suggest looking at the owner's manual under which should be located in the front dash compartment on the passengers side. Once you have the manual, look in the appendix until you find controls (or something similar) then go to that page and read about your vehicles control buttons. Your answer should be in the manual.

Something that all automobile owners should do right after purchasing a new vehicle, is reading the owners manual. As boring as it may seem, reading the owner's manual will help you get used to your new car quicker and give you instructions on how to take care of your car so that it lasts.

Have a great day, and I wish you safe traveling for now and forever! :)

 

7 0
3 years ago
Read 2 more answers
Other questions:
  • 2.31 LAB: Simple statistics Part 1 Given 4 integers, output their product and their average, using integer arithmetic. Ex: If th
    5·2 answers
  • You have been assigned to design an open cylindrical storage tank 4 meters tall with a diameter of 8 meters to be made out of A-
    13·1 answer
  • In water and wastewater treatment processes a filtration device may be used to remove water from the sludge formed by a precipit
    10·1 answer
  • Wave flow of an incompressible fluid into a solid surface follows a sinusoidal pattern. Flow is two-dimensional with the x-axis
    13·1 answer
  • Fluid systems can distribute pressure unequally to all points in a system.<br><br> True<br> False
    15·1 answer
  • Think about the KIA factory shown in the video, what are two things that managers could do to reduce waste or increase efficienc
    6·1 answer
  • For the floor plan shown, if a = sm b= 8m, specify type of Load on Beam AHS<br> D<br> B В
    10·1 answer
  • I need the answer please
    7·1 answer
  • NO SCAMS
    9·2 answers
  • Pipelines are a useful means of transporting oil because they: Multiple select question. are fast never fail to deliver are chea
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!