Answer:

Explanation:
P = Power = 50 kW
n = Number of photons per second
h = Planck's constant = 
= Frequency = 781 kHz
r = Distance at which the photon intensity is i = 1 photon/m²
Power is given by

Photon intensity is given by

The distance is 
Answer: The original temperature was

Explanation:
Let's put the information in mathematical form:





If we consider the helium as an ideal gas, we can use the Ideal Gas Law:

were <em>R</em> is the gas constant. And <em>n</em> is the number of moles (which we don't know yet)
From this, taking
, we have:
⇒
Now:
⇒
The solid, liquid and gas phases of water would have the same structure of the molecules since they are same substance. The only difference would be the distances of the molecules in the container. For a ice, the molecules are close to each other where the molecules vibrate only in place. For liquid, the molecules are freely moving and are at some distance with each other but not that far away with each other. Steam, on the other hand, would have molecules that are very far from each other and are freely moving in the whole container. As the container is heated, the size of the molecules would not change. It is only the volume that has changed. Also, the mass is the same since there is no outflow of the substances.
Answer:
second lag
Explanation:
If in a cup game, a specified time limit is assigned to both teams to score high. If both teams are unable to score or if score of both the teams is equal then there is another second lag played where each team tries to score high. Even if in second lag both teams fail to score higher than other the last third lag is played or else game is declared draw.