Answer:
h'=0.25m/s
Explanation:
In order to solve this problem, we need to start by drawing a diagram of the given situation. (See attached image).
So, the problem talks about an inverted circular cone with a given height and radius. The problem also tells us that water is being pumped into the tank at a rate of
. As you may see, the problem is talking about a rate of volume over time. So we need to relate the volume, with the height of the cone with its radius. This relation is found on the volume of a cone formula:

notie the volume formula has two unknowns or variables, so we need to relate the radius with the height with an equation we can use to rewrite our volume formula in terms of either the radius or the height. Since in this case the problem wants us to find the rate of change over time of the height of the gasoline tank, we will need to rewrite our formula in terms of the height h.
If we take a look at a cross section of the cone, we can see that we can use similar triangles to find the equation we are looking for. When using similar triangles we get:

When solving for r, we get:

so we can substitute this into our volume of a cone formula:

which simplifies to:


So now we can proceed and find the partial derivative over time of each of the sides of the equation, so we get:

Which simplifies to:

So now I can solve the equation for dh/dt (the rate of height over time, the velocity at which height is increasing)
So we get:

Now we can substitute the provided values into our equation. So we get:

so:

To solve this problem we will use the definition of the period in a simple pendulum, which warns that it is dependent on its length and gravity as follows:

Here,
L = Length
g = Acceleration due to gravity
We can realize that
is a constant so it is proportional to the square root of its length over its gravity,

Since the body is in constant free fall, that is, a point where gravity tends to be zero:

The value of the period will tend to infinity. This indicates that the pendulum will no longer oscillate because both the pendulum and the point to which it is attached are in free fall.
Only within the same technology. / / /
If both of the bulbs you're comparing are incandescent, or both fluorescent, or both CFL, or both LED, then the one that uses more power is brighter. But a CFL with the same brightness as an incandescent bulb uses less power, and an LED bulb with the same brightness as both of those uses less power than either of them.
Answer:2.67kgm/s cube
Explanation: density = mass ÷ volume = 400 ÷ 150