which means that the volume increased by 26.4 mL in order to compensate for the decrease in pressure.
Like I said, depends on what your initial volume was, but that's how you think of it.
Hope this helped!
Answer:
Is there a picture or smth?
Explanation:
Using Gay-Lussac's Law, pressure is proportional to (absolute) temperature in Kelvin. We first convert the temperature values to Kelvin: 110 C = 383.15 K, while 65 C = 338.15 K.
P1/T1 = P2/T2
22.5/383.15 = P2/338.15
P2 = 19.9 psi
Answer:
About 0.1738 liters
Explanation:
Using the formula PV=nRT, where p represents pressure in atmospheres, v represents volume in liters, n represents the number of moles of ideal gas, R represents the ideal gas constant, and T represents the temperature in kelvin, you can solve this problem. But first, you need to convert to the proper units. 215ml=0.215L, 86.4kPa is about 0.8527 atmospheres, and 15C is 288K. Plugging this into the equation, you get:

Now that you know the number of moles of gas, you can plug back into the equation with STP conditions:

Hope this helps!
Answer:
2 mole of Sodium hydroxide reacts with 1 mole of Sulfuric acid
Explanation:
Write down the equation in the beginning with reactants and products:
NaOH + H₂SO₄ → Na₂SO₄ + H₂0
Now try to balance it. Try with Na first:
2NaOH + H₂SO₄ → Na₂SO₄ + H₂0
Na atoms are balanced. There are 6 Oxygen atoms on the right and 5 on the left. Balance by increasing the H₂O moles:
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂0
Check if H atoms are also balanced. They are. That means our final reaction is:
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂0
2 Moles of NaOH reacts with 1 mole of H₂SO₄