As Potential energy =mgh
m= 0.95kg
h=3 meter
g = 9.8 m/sec^2. ( acceleration due to gravity)
So P.E =(0.95)(9.8)(3)kgm^2/s^2
P.E =27.93 joules
Answer:
500cal
Explanation:
Given parameters:
Mass of water = 50g
Initial temperature = 22°C
Final temperature = 32°C
Specific heat of water = 1cal/g
Unknown:
Amount of heat absorbed by the water in calories = ?
Solution:
To solve this problem, we use the expression below:
H = m c Ф
H is the amount of heat absorbed
m is the mass
c is the specific heat capacity
Ф is the temperature change
H = 50 x 1 x (32 - 22) = 500cal
Answer:
The direction of the field is downward, and negatively charged particles will experience an upwards force due to the field.
F = N e E where E is the value of the field and N e the charge Q
M g = N e E and M g is the weight of the drop
N = M g / (e E)
N = 1.1E-4 * 9.8 / (1.6E-19 * 370) = 1.1 * 9.8 / (1.6 * 370) * E15 = 1.82E13
.00011 kg is a very large drop
Q = N e = M g / E = .00011 * 9.8 / 370 = 2.91E-6 Coulombs
Check: N = Q / e = 2.91E-6 / 1.6E-19 = 1.82E13 electrons
Answer:
I think it is acute angle.
Explanation:
Because it is an angle between 0° and 90°. Hope this answer wil help you.
Answer:
The value of the acceleration of gravity of the Unknown Planet = 1.14 
Explanation:
length of the pendulum (L)= 1.15 m
Time period (T)= 6.29 seconds
We know that time period of a simple pendulum is given by
⇒ T = 2
×
put the values in the above formula we get
⇒ T = 2
× 
⇒ 6.29 = 2
× 
By solving the above equation we get
⇒ g = 1.14 
This is the value of the acceleration of gravity of the Unknown Planet.