Sicko
Sickorudjjdjejfjjzsjskks
Answer:
acceleration, a = 9.8 m/s²
Explanation:
'A ball is dropped from the top of a building' indicates that the initial velocity of the ball is zero.
u = 0 m/s
After 2 seconds, velocity of the ball is 19.6 m/s.
t = 2s, v = 19.6 m/s
Using
v = u + at
19.6 = 0 + 2a
a = 9.8 m/s²
For any mass m:
a = F/m
v = √2*F/m*s = √2F/sm = k/√m
Momentum = mv = k√m
Energy = 1/ mv² = 1/2 m.k²/m = 1/2k²
SO
Both will have same energy
The larger mass will have greater momentum
Answer:
Explanation:
Given that,
At one instant,
Center of mass is at 2m
Xcm = 2m
And velocity =5•i m/s
One of the particle is at the origin
M1=? X1 =0
The other has a mass M2=0.1kg
And it is at rest at position X2= 8m
a. Center of mass is given as
Xcm = (M1•X1 + M2•X2) / (M1+M2)
2 = (M1×0 + 0.1×8) /(M1 + 0.1)
2 = (0+ 0.8) /(M1 + 0.1)
Cross multiply
2(M1+0.1) = 0.8
2M1 + 0.2 =0.8
2M1 = 0.8-0.2
2M1 = 0.6
M1 = 0.6/2
M1 = 0.3kg
b. Total momentum, this is an inelastic collision and it momentum after collision is given as
P= (M1+M2)V
P = (0.3+0.1)×5•i
P = 0.4 × 5•i
P = 2 •i kgm/s
c. Velocity of particle at origin
Using conversation of momentum
Momentum before collision is equal to momentum after collision
P(before) = M1 • V1 + M2 • V2
We are told that M2 is initially at rest, then, V2=0
So, P(before) = 0.3V1
We already got P(after) = 2 •i kgm/s in part b of the question
Then,
P(before) = P(after)
0.3V1 = 2 •i
V1 = 2/0.3 •i
V1 = 6 ⅔ •i m/s
V1 = 6.667 •i m/s