1. Our solar system is the only place in the universe where gravity played a key part in the formation of planets.
2. Rocky planets are small, dense, and orbit relatively close to the sun, compared to the Jovian planets, which are large, less dense, and orbiting far from the sun.
3. _______
If i was feeling harsh today, I'd say the answer to your question is impossible to obtain due to the fact that photons do not emit radiation, photons ARE the radiation emitted. Though for the sake of it, here is the method...
<u>The simple method:
</u>
E=hf
therefore f=e/h
f=(3.611x10^-15) / 6.63x10^-34)
Answer: 5.45x10^18
If the field is in a vacuum, the magnetic field is the dominant factor determining the motion. Since the magnetic force is perpendicular to the direction of travel, a charged particle follows a curved path in a magnetic field. The particle continues to follow this curved path until it forms a complete circle. Another way to look at this is that the magnetic force is always perpendicular to velocity, so that it does no work on the charged particle. The particle’s kinetic energy and speed thus remain constant. The direction of motion is affected but not the speed.
A negatively charged particle moves in the plane of the paper in a region where the magnetic field is perpendicular to the paper (represented by the small × ’s—like the tails of arrows). The magnetic force is perpendicular to the velocity, so velocity changes in direction but not magnitude. The result is uniform circular motion.
Answer:
0.465 kgm/s
Explanation:
Given that
Mass of the cart A, m1 = 450 g
Speed of the cart A, v1 = 0.85 m/s
Mass of the cart B, m2 = 300 g
Speed of the cart B, v2 = 1.12 m/s
Now, using the law of conservation of momentum.
It is worthy of note that our cart B is moving in opposite directions to A
m1v1 + m2v2 =
(450 * 0.85) - (300 * 1.12) =
382.5 - 336 =
46.5 gm/s
If we convert to kg, we have
46.5 / 100 = 0.465 kgm/s
Thus, the total momentum of the system is 0.465 kgm/s