Answer:
Difference between concentrated acid and weak acid :---
- According to Arrhenius's theory the substances which easily get dissociated into H+ ions when dissolved in water are acids.
- And the substance which readily gives H+ ions on dissociation (when dissolved in water) are Strong Acid. Examples are HCl , H2SO4 etc.
While,
- Concentration of acid is just the value of pH. pH is the measurement of concentration of acid or base. The lower the pH, higher the concentration.
- So strong acid is strong because it gives H+ ions readily in water and Concentration is the value of pH.
Answer:
Cellular respiration.
Explanation:
Through the process of cellular respiration, the energy in food is converted into energy that can be used by the body's cells. During cellular respiration, glucose and oxygen are converted into carbon dioxide and water, and the energy is transferred to ATP.
Answer:
A
Explanation:
The molecule with the strongest intramolecular bond is HF. Hydrogen fluoride is the answer due to the strong and highly electronegative nature of Fluorine.
- Fluorine is the most electronegative element in nature.
- When it combines with other substances, due to its electronegative property, it draws most of the electrons closest to itself in the bond.
- This tendency and ability makes the shared electrons closer the fluorine in the bond.
- The strong polarization that ensues confers a very strong covalent bond pair on the bond formed.
Answer:
I think probably diet because the type of food you put in your body (if it has high calorie or sodium) can severley affect your overall health and therefore affect your bpm(beats per minute)
Explanation:
Answer:
E₁ ≅ 28.96 kJ/mol
Explanation:
Given that:
The activation energy of a certain uncatalyzed biochemical reaction is 50.0 kJ/mol,
Let the activation energy for a catalyzed biochemical reaction = E₁
E₁ = ??? (unknown)
Let the activation energy for an uncatalyzed biochemical reaction = E₂
E₂ = 50.0 kJ/mol
= 50,000 J/mol
Temperature (T) = 37°C
= (37+273.15)K
= 310.15K
Rate constant (R) = 8.314 J/mol/k
Also, let the constant rate for the catalyzed biochemical reaction = K₁
let the constant rate for the uncatalyzed biochemical reaction = K₂
If the rate constant for the reaction increases by a factor of 3.50 × 10³ as compared with the uncatalyzed reaction, That implies that:
K₁ = 3.50 × 10³
K₂ = 1
Now, to calculate the activation energy for the catalyzed reaction going by the following above parameter;
we can use the formula for Arrhenius equation;
If &
E₁ ≅ 28.96 kJ/mol
∴ the activation energy for a catalyzed biochemical reaction (E₁) = 28.96 kJ/mol