Answer:
Both are similar concepts.
Sound is the vibration of air particles (compression and expansion) the can reach your ears. But you can have vibration being propagated in liquids and solids as well.
Some sounds are generated in structures, so the vibration of a structure is converted to sound in air — for instance, a loudspeaker.
Explanation:
The correct number of significant figures and digits is 3
Answer:
See below
Explanation:
<u> Name </u> <u>Formula </u> <u> Major species </u> <u> </u>
Zinc iodide ZnI₂ H₂O(ℓ), I⁻(aq), Zn²⁺(aq),
Nitrogen(I) oxide N₂O H₂O(ℓ), N₂O(aq)
Sodium nitrite NaNO₂ H₂O(ℓ), Na⁺(aq), NO₂⁻(aq)
Glucose C₆H₁₂O₆ H₂O(ℓ), C₆H₁₂O₆(aq)
Nickel(II) iodide NiI₂ H₂O(ℓ), I⁻(aq), Ni²⁺(aq)
- Glucose and nitrogen(I) oxide are covalent compounds. They do not dissociate in solution.
- The compounds containing metals are ionic. They produce ions in solution.
- ZnI₂ and NiI₂ produce twice as many iodide ions as metal ions.
Answer:
V KOH = 41 mL
Explanation:
for neutralization:
- ( V×<em>C </em>)acid = ( V×<em>C </em>)base
∴ <em>C </em>H2SO4 = 0.0050 M = 0.0050 mol/L
∴ V H2SO4 = 41 mL = 0.041 L
∴ <em>C</em> KOH = 0.0050 N = 0.0050 eq-g/L
∴ E KOH = 1 eq-g/mol
⇒ <em>C</em> KOH = (0.0050 eq-g/L)×(mol KOH/1 eq-g) = 0.0050 mol/L
⇒ V KOH = ( V×<em>C </em>) acid / <em>C </em>KOH
⇒ V KOH = (0.041 L)(0.0050 mol/L) / (0.0050 mol/L)
⇒ V KOH = 0.041 L