The net equations are obtained from the double displacement of the cations and anions, then balance.
NH3(aq) + HC2H3O2 (aq) = NH4+(aq) + C2H3O2-(aq<span>)
</span><span>H+(aq) + C2H3O2-(aq) + NH3(aq) -> NH4+(aq) + C2H3O2-(aq)</span><span>
</span><span>2NaOH(aq) + H2SO4 (aq) = Na2SO4 (s)+ 2H2O (aq)
</span>H2S (aq) + Ba(OH)2 (aq) = BaS (s)+ 2H2O (aq)
Answer:
Go through your kitchen waste. Vegetables and fruit peelings are the number one food remnants you should keep aside. ...
Add other organic materials to the compost. ...
Collect some garden waste. ...
Create the compost. ...
Apply the fertilizer.
The gradient is the slope of a linear equation, represented in the simplest form as y = mx + b. In Earth Science, the gradient is usually used to measure how steep certain changes in elevation are.
In order to find the gradient in a topographical setting, one must know two things: the elevation of two points and the distance between the two points. Once these values are known, the gradient can be found by dividing the change in field value, or the change in elevation, by the distance. The higher the gradient value is, the steeper the slope is.
Answer:
Transcribed image text: Answer.
the following question for the mixing of gaseous hydrogen chloride with water to make hydrochloric acid. HCl) + H2O(2) → H30*) + Cl (2) What is the phase label on HCI? aq
Explanation:
Relation between entropy change and specific heat is as follows.

The given data is as follows.
mass = 500 g,
= 24.4 J/mol K
= 500 K,
= 250 K
Mass number of copper = 63.54 g /mol
Number of moles = 
= 
= 7.86 moles
Now, equating the entropy change for both the substances as follows.
= ![7.86 \times 24.4 \times [500 -T_{f}]](https://tex.z-dn.net/?f=7.86%20%5Ctimes%2024.4%20%5Ctimes%20%5B500%20-T_%7Bf%7D%5D)

= 750
So,
= 
- For the metal block A, change in entropy is as follows.

= ![24.4 log [\frac{375}{500}]](https://tex.z-dn.net/?f=24.4%20log%20%5B%5Cfrac%7B375%7D%7B500%7D%5D)
= -3.04 J/ K mol
- For the block B, change in entropy is as follows.

= ![24.4 log [\frac{375}{250}]](https://tex.z-dn.net/?f=24.4%20log%20%5B%5Cfrac%7B375%7D%7B250%7D%5D)
= 4.296 J/Kmol
And, total entropy change will be as follows.
= 4.296 + (-3.04)
= 1.256 J/Kmol
Thus, we can conclude that change in entropy of block A is -3.04 J/ K mol and change in entropy of block B is 4.296 J/Kmol.