1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DerKrebs [107]
3 years ago
14

The electric potential at the surface of a charged conductor _______.

Physics
1 answer:
frez [133]3 years ago
6 0

Answer:

The electric potential at the surface of a charged conductor<u> is always such that the potential is zero at all points inside the conductor.</u>

Explanation:

Each point on the surface of a balanced charged conductor has the same electrical potential.

The surface on any charged conductor in electrostatic equilibrium is an equipotential surface. Since the electric field is equal to zero inside the conductor, the electric potential at any point inside and on the surface is equivalent to its value.

You might be interested in
A playground merry-go-round has a mass of 115 kg and a radius of 2.50 m and it is rotating with an angular velocity of 0.520 rev
tatuchka [14]

Answer:

W_f = 2.319 rad/s

Explanation:

For answer this we will use the law of the conservation of the angular momentum.

L_i = L_f

so:

I_mW_m = I_sW_f

where I_m is the moment of inertia of the merry-go-round, W_m is the initial angular velocity of the merry-go-round, I_s is the moment of inertia of the merry-go-round and the child together and W_f is the final angular velocity.

First, we will find the moment of inertia of the merry-go-round using:

I = \frac{1}{2}M_mR^2

I = \frac{1}{2}(115 kg)(2.5m)^2

I = 359.375 kg*m^2

Where M_m is the mass and R is the radio of the merry-go-round

Second, we will change the initial angular velocity to rad/s as:

W = 0.520*2\pi rad/s

W = 3.2672 rad/s

Third, we will find the moment of inertia of both after the collision:

I_s = \frac{1}{2}M_mR^2+mR^2

I_s = \frac{1}{2}(115kg)(2.5m)^2+(23.5kg)(2.5m)^2

I_s = 506.25kg*m^2

Finally we replace all the data:

(359.375)(3.2672) = (506.25)W_f

Solving for W_f:

W_f = 2.319 rad/s

7 0
3 years ago
One mole of water is equivalent to 18 grams of water. A glass of water has a mass of 200 g. How many moles of water is this?
Black_prince [1.1K]
200g*1 mole/ 18g=11.1 moles There are 11.1 moles of water. 
4 0
2 years ago
Read 2 more answers
An experimental tungsten light bulb filament has a length of 5 cm and a diameter of 0.074 cm. The filament is basically just a w
adell [148]

Answer:

power emitted is 1.75 W

Explanation:

given data

length l = 5 cm = 5 ×10^{-2} m

diameter d = 0.074 cm = 74 ×10^{-5} m

total filament emissivity = 0.300

temperature = 3068 K

to find out

power emitted

solution

we find first area that is π×d×L

area = π×d×L

area = π×74 ×10^{-5}×5 ×10^{-2}

area = 1162.3892  ×10^{-5} m²

so here power emitted  is express as

power emitted  = E × σ × area × (temperature)^4

put here all value

power emitted  = 0.300× 5.67 × 1162.3892  ×10^{-5}  × (3068)^4

power emitted = 1.75 W

5 0
3 years ago
A normal walking speed is around 2.0 m/s . how much time t does it take the box to reach this speed if it has the acceleration 5
creativ13 [48]

Given:

u(initial velocity)=0

a=5.54m/s^2

v(final velocity)=2 m/s

v=u +at

Where v is the final velocity.

u is the initial velocity

a is the acceleration.

t is the time

2=0+5.54t

t=2/5.54

t=0.36 sec


6 0
3 years ago
Can anyone tell me what's the base quantities for Force, Pressure and Charge?​
mr Goodwill [35]

Force, pressure, and charge are all what are called <em>derived units</em>. They come from algebraic combinations of <em>base units</em>, measures of things like length, time, temperature, mass, and current. <em>Speed, </em>for instance, is a derived unit, since it's a combination of length and time in the form [speed] = [length] / [time] (miles per hour, meters per second, etc.)

Force is defined with Newton's equation F = ma, where m is an object's mass and a is its acceleration. It's unit is kg·m/s², which scientists have called a <em>Newton</em>. (Example: They used <em>9 Newtons</em> of force)

Pressure is force applied over an area, defined by the equation P = F/A. We can derive its from Newtons to get a unit of N/m², a unit scientists call the <em>Pascal</em>. (Example: Applying <em>100 Pascals </em>of pressure)

Finally, charge is given by the equation Q = It, where I is the current flowing through an object and t is how long that current flows through. It has a unit of A·s (ampere-seconds), but scientist call this unit a Coulomb. (Example: 20 <em>Coulombs</em> of charge)

4 0
3 years ago
Other questions:
  • Built an atom of Krypton which has an atomic number of 36?
    7·1 answer
  • Can someone help??
    15·1 answer
  • PLEASE HURRYYYYYY:
    10·1 answer
  • What is the velocity of a beam of electrons that goes undeflected when moving perpendicular to an electric and magnetic fields.
    6·1 answer
  • Psychophysics is the study of
    15·2 answers
  • [3 points] Question: Consider a pendulum made from a uniform, solid rod of mass M and length L attached to a hoop of mass M and
    8·2 answers
  • A thin, 75.0 cm wire has a mass of 16.5 g. One end is tied to a nail, and the other is attached to a screw that can be adjusted
    7·1 answer
  • Acceleration with motion graphs please help
    9·1 answer
  • Which of the following<br>is not the unit of distance​
    13·2 answers
  • the diagram below shows the situation described in the problem. the focal length of the lens is labeled f; the scale on the opti
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!