The gas flows from higher concentration/pressure to lower concentration/pressure, which is outside the ball.
The element "X" is "O" (oxygen).
<h3>Calculation:</h3>
Given,
Chemical formula = Na₂CX₃
Formula mass = 106 amu
Molar mass of Na = 23 amu
Molar mass of C = 12 amu
To find,
Element X =?
We will equate the equation as follows,
2(23) + 12 + 3(y) = 106
46 + 12 + 3y =106
58 + 3y = 106
3y = 106 - 58
3y = 48
y = 48/3
y = 16
We know that Oxygen has molecular mass of 16. Therefore the element "X" is "O".
Learn more about molar mass here:
brainly.com/question/22997914
#SPJ4
Answer:
M.Mass = 3.66 g/mol
Data Given:
M.Mass = M = ??
Density = d = 0.1633 g/L
Temperature = T = 273.15 K (Standard)
Pressure = P = 1 atm (standard)
Solution:
Let us suppose that the gas is an ideal gas. Therefore, we will apply Ideal Gas equation i.e.
P V = n R T ---- (1)
Also, we know that;
Moles = n = mass / M.Mass
Or, n = m / M
Substituting n in Eq. 1.
P V = m/M R T --- (2)
Rearranging Eq.2 i.e.
P M = m/V R T --- (3)
As,
Mass / Volume = m/V = Density = d
So, Eq. 3 can be written as,
P M = d R T
Solving for M.Mass i.e.
M = d R T / P
Putting values,
M = 0.1633 g/L × 0.08205 L.atm.K⁻¹.mol⁻¹ × 273.15 K / 1 atm
M = 3.66 g/mol
Answer:
electronegativity increases
Answer:
sp3 hybridization
Explanation:
Hybridization means the mixing of atomic orbitals to yield hybrid orbitals with characteristics that are different from that of the isolated atomic orbitals before the combination.
sp3 hybridization occurs when one s orbital is mixed with three p orbitals to yield four sp3 hybrid orbitals which can be used to bond to a central atom.
The central atom is then located at the center of a regular tetrahedron at a bond angle of 109°.