1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna35 [415]
3 years ago
7

What formula allows you to calculate the x component of a projectile?

Physics
2 answers:
Kay [80]3 years ago
8 0

X-component of a projectile in flight =

(initial x-component)

plus

(initial horizontal component of velocity) x (flight time so far)

RideAnS [48]3 years ago
4 0

Answer:

Explanation:

X- component = Horizontal component

Initial velocity = U

X- component =Ucos x angle

You might be interested in
What is an electrical current which comes from a battery
koban [17]

Answer:

Direct current

Explanation:

The current that is supplied by electric cells and batteries.Electons flows in one direction and does not change directions.

5 0
3 years ago
10. A man throws a water balloon down off the edge of a building. If he wants the water
stepladder [879]

Answer:

intinal speed should be 10

Explanation:

v = v0 + at

30 = v0 +10.2

then v0= 10

5 0
2 years ago
Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
brilliants [131]

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

6 0
3 years ago
How can a person detect infrared rays without an instrument?
natita [175]
So we want to know how can we detect infrared rays without an instrument. Infrared rays or heat, are a part of electromagnetic spectrum. We have specialized nerve cells in our skin called thermoreceptors that can detect differences in temperature that are produced by infrared part of EM spectrum.
7 0
3 years ago
Read 2 more answers
What is kepler's law??​
Elan Coil [88]
<h2>QUESTION:- </h2>

➜what is kepler's law??

\huge\red{\boxed{\huge\mathbb{\red A \pink{N}\purple{S} \blue{W}\orange{ER}}}}

Kepler gave the three laws or theorems of motion of the orbitals bodies

{\huge {\bold{ \red{ \star}}}}{ \blue{ \bold{FIRST \: \: \: LAW}}}

This law state that the celestial bodies revolves around the stars in elliptical orbit and star as a single focus.

Example :- Earth revolves around the Sun as assuming it as single focus

This also shows that earth revolves around the sun in elliptical orbit.

{\huge {\bold{ \blue{ \star}}}}{ \green{ \bold{SECOND \: \: \: LAW}}}

Area covered by the planet is equal in equal duration of time irrespective of the position of the planet.

It also states that Angular momentum is constant

As Angular momentum is constant it means areal velocity is also constant.

\frac{ \triangle \: A}{ \triangle \: T} = \frac{L}{2m}△T△A=2mL

where:-

A is the area.

T is the time.

L is the angular momentum.

M is the mass of the body.

{\huge {\bold{ \green{ \star}}}}{ \purple{ \bold{THIRD \: \: \: LAW}}}

square of the time of the revolution is directly proportional to the cube of the distance between the planet and star in Astronomical unit.

{T}^{2} = {a}^{3}T2=a3

where:-

T = time of revolution

a is the distance between the planet and star.

\purple\star \: {Thanks \: And \: Brainlist} \blue \star \\ {\orange{ \star}}{if \: U \: Like d \: My \: Ans} {\green{ \star }}

8 0
3 years ago
Other questions:
  • The weight of a box is found to be 30 N. What is the approximate mass of the box?
    11·2 answers
  • On his fishing trip Justin takes the boat 25 km south. The fish aren’t biting so he goes 10 km west. He follows a school of fish
    14·1 answer
  • What happens when an object is dropped? A. It decelerates at a rate of 9.8 m/s/s. B. It travels 9.8 meters before stopping. C. I
    5·1 answer
  • _________ is amount of “ground” an object moves from its starting point and __________ is how much “ground” and object covers in
    6·2 answers
  • A forensic scientist receives an unknown liquid. Upon close observation, it appears there may be small objects floating in the l
    9·1 answer
  • In an arcade game a 0.099 kg disk is shot across a frictionless horizontal surface by compressing it against a spring and releas
    10·1 answer
  • A girl of mass 55 kg throws a ball of mass 0.80 kg against a wall. The ball strikes the wall horizontally with a speed of 25 m/s
    7·2 answers
  • ¿Cuál es la masa aproximada del aire en una habitación de 5.6 m * 3.8 m * 2.8 m?
    13·1 answer
  • Joint replacement are often made of the element titanium. Which type of matter is titanium
    11·2 answers
  • The coefficient of friction on a surface is 0.25. A box requires 100N to slide it across the surface. What is the weight of the
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!