<u>Answer</u>:
Effort is the unaltered force. Load is the altered force.
To solve this problem it is necessary to apply the concepts related to the orbital velocity of a satellite on earth.
This concept is expressed in the equation,

Where,
G = Universal Gravitational constant
Mass of the Earth
Therefore the ratio of the velocity from two satellites is,

The ratio between the two satellites is the same, then



Therefore the correct option is B.
Answer:
12.0 Volt
Explanation:
Step 1: Given data
Resistance of the ohmic dipole (R): 100 Ohm
Intensity of current (I): 120 mA (0.120 A)
Step 2: Calculate the voltage (V) across this chemical dipole
To calculate the voltage across the ohmic dipole, we will use Ohm's law.
I = V/R
V = I × R
V = 0.120 A × 100 Ohm = 12.0 V
Ohm’s Law states that electrical current is proportional to voltage and therefore inversely proportional to resistance - V = I x R
Answer:
Current will decrease.
Explanation:
When we increase the number of stepping in transformer, the voltage will increase as its is directly proportional to the number of turn of stepping. Thus as the voltage will increase, current will decrease. As per the equation of ideal transformer, E1 / E2 = I2 / I1
E1 and E2 are the voltages in primary and secondary winding and I1 and I2 are the current.
As the number of turns will be increased more inevitable losses will be generated that dissipates heat thus warming the primary.
Though the conservation of energy is obeyed but losses occur in this scenario hence step-up transformers cannot be used to create free energy.