Height of the rocket will be <span>h(t)=−<span>12</span>g<span>t2</span>+<span>v0</span>tsinθ+<span>h0</span></span> where
<span>g=9.8<span> m/s2</span></span>
<span><span>v0</span>=86 m/s</span>
<span><span>h0</span>=0 m</span>
<span>θ= angle formed with the vertical
</span>
That's a parabola. You'll solve that for <span>h(<span>tf</span>)=0</span> to find the time of flight.
The horizontal component of the rocket's velocity will be <span><span>vx</span>=<span>v0</span>cosθ</span>. You know that <span>x=<span>vx</span><span>tf</span>=104 m</span> where <span>tf</span> is the time of flight. You can use that relationship to write an expression for <span>tf</span> in terms of <span>v0</span> and θ. Substitute that into the first equation and solve for θ.
Once you've got the parabola figured out, you can easily find the maximum height by finding the vertex, and you've already found the duration of the flight.
Two equivalent hybridized orbitals will form from the mixing of one s-orbital and one p-orbital, that is (sp) orbital.
<h3>What are orbitals?</h3>
Orbital is the place around nucleus where mostly the electrons are present. There are four types of orbitals are present, s, p, d, and f.
The orbitals that are formed by the mixing of these orbitals are called hybrid orbitals.
Thus, two equivalent hybridized orbitals will form from the mixing of one s-orbital and one p-orbital, that is (sp) orbital.
Learn more about orbitals
brainly.com/question/18914648
#SPJ4
Answer:
10.53m/s²
Explanation:
Centripetal acceleration is the acceleration of an object about a circle. The formula for calculating centripetal acceleration is expressed by:

v is the velocity of the car = 24.5m/s
r is the radius of the track = 57.0m
Substitute the given values into the formula:

Hence the centripetal acceleration of the race car is 10.53m/s²
Velocity units =m/s
Acceleration is the rate of change of velocity
a =timechange in velocity
Therefore SI units of acceleration is ms−1/s=s2m
The answer must be a mass x velocity