<h3><u>Answer</u>;</h3>
-The total momentum of an isolated system is constant.
-The total momentum of any number of particles is equal to the vector sum of the momenta of the individual particles.
-The vector sum of forces acting on a particle equals the rate of change of momentum of the particle with respect to time.
<h3><u>Explanation</u>;</h3>
- Momentum is a vector quantity, and therefore we need to use vector addition when summing together the momenta of the multiple bodies which make up a system.
- The vector sum of forces acting on a particle is equivalent to the rate of change of momentum of the particle with respect to time. This is according to the Newton's second Law of motion. In mathematical terms, ֿF = d ֿp/dt, that is F= ma.
- According to the Law of conservation of Momentum, or a collision occurring between object 1 and object 2 in an isolated system, the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.
Answer:
B. 80 m/s²
Explanation:
F = ma
a = F/m = (40 N)/(0.5 kg) = 80 m/s²
Answer:
the smallest angle from the antennas is <em>47.3°</em>
Explanation:
We first need to write the expression for the relation between the wavelength (λ) and the frequency (f) of the wave, and then solve for the wavelength.
Therefore, the relation is:
λ = c /f
where
- c is the speed of light constant
- λ is the wavelength
- f is the frequency
Thus,
λ = (3 × 10⁸ m/s) / (3.4 MHz)
= (3 × 10⁸ m/s) / (3.4 MHz)(10⁶ Hz/1 MHz)
= 88.235 m
Therefore, the smallest angle measured (from the north of east) from the antennas for the constructive interference of the two-radio wave can be calculated as
θ = sin⁻¹(λ / d)
where
- d is the distance between the two radio antennas
Thus,
θ = sin⁻¹(88.235 / 120)
<em>θ = 47.3 °</em>
<em></em>
Therefore, the smallest angle from the antennas, measured north of east, at which constructive interference of two radio waves occurs is <em>47.3 °</em>.
From the principle of energy conservation, the kinetic energy of the pendulum at 0.5 m is 14.7 J.
<h3>What is a pendulum?</h3>
A pendulum swings back and forth and can be used to show the change of potential energy to kinetic energy and vice versa.
Given that the kinetic energy is converted to the potential energy; the potential energy at 0.5 m is 3 * 9.8 * 0.5 = 14.7 J.
Following the principle of energy conservation, the kinetic energy of the pendulum at 0.5 m is 14.7 J.
Learn more about pendulum:brainly.com/question/14759840
#SPJ1