(amount of heat)Q = ? , (Mass) m= 4 g , ΔT = T f - T i = 180 c° - 20 °c = 160 °c ,
Ce = 0.093 cal/g. °c
Q = m C ΔT
Q = 4 g × 0.093 cal/g.c° × ( 180 °c- 20 °c )
Q= 4×0.093 × 160
Q = 59.52 cal
I hope I helped you^_^
Answer:
intensity.
Explanation:
when the light collected by the lens is focused into a small spot it tends to increase the intensity of the light.
as different path of light with different intensity combines from passing through the lens it tends to make the light path and intensity coherent and after being coherent there intensity increases.
Can I see the graph so I can help you
Answer:
Explanation:
given,
s = 400- 16 t²
we know,
Velocity of an object is defined as the change in displacement per unit change in time.
velocity an also be return as
Hence, instantaneous velocity function given by
To calculate instantaneous velocity, you need to insert value of time.
ex, instantaneous velocity at t = 4 s
v = -32 x 4 = -128 m/s.
I think you're saying that once you start pushing on the cars, you want to be able to stop each one in the same time.
This is sneaky. At first, I thought it must be both 'c' and 'd'. But it's not
kinetic energy, for reasons I'm not ambitious enough to go into.
(And besides, there's no great honor awarded around here for explaining
why any given choice is NOT the answer.)
The answer is momentum.
Momentum is (mass x speed). Change in momentum is (force x time).
No matter the weight (mass) or speed of the car, the one with the greater
momentum is always the one that will require the greater (force x time)
to stop it. If the time is the same for any car, then more momentum
will always require more force.