Answer:
the acceleration of the airplane is 5.06 x 10⁻³ m/s²
Explanation:
Given;
initial velocity of the airplane. u = 34.5 m/s
distance traveled by the airplane, s = 46,100 m
final velocity of the airplane, v = 40.7 m/s
The acceleration of the airplane is calculated from the following kinematic equation;
v² = u² + 2as

Therefore, the acceleration of the airplane is 5.06 x 10⁻³ m/s²
Answer:
Large above ground mausoleums were not common in the elite Shang burials.
Explanation:
Large, above the ground mausoleums were not common so the answer is option B.
<span>Px = 0
Py = 2mV
second, Px = mVcosφ
Py = –mVsinφ
add the components
Rx = mVcosφ
Ry = 2mV – mVsinφ
Magnitude of R = âš(Rx² + Ry²) = âš((mVcosφ)² + (2mV – mVsinφ)²)
and speed is R/3m = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
simplifying
Vf = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²)
Vf = (1/3)âš((Vcosφ)² + (2V – Vsinφ)²)
Vf = (V/3)âš((cosφ)² + (2 – sinφ)²)
Vf = (V/3)âš((cos²φ) + (4 – 2sinφ + sin²φ))
Vf = (V/3)âš(cos²φ) + (4 – 2sinφ + sin²φ))
using the identity sin²(Ď)+cos²(Ď) = 1
Vf = (V/3)âš1 + 4 – 2sinφ)
Vf = (V/3)âš(5 – 2sinφ)</span>
Heat makes things expand, so in hot water the ballon will get bigger
Answer:
hi
Explanation:
Instead, Earth has seasons because our planet's axis of rotation is tilted at an angle of 23.5 degrees relative to our orbital plane, that is, the plane of Earth's orbit around the sun. The tilt in the axis of the Earth is called its obliquity by scientists. ... Over the course of a year, the angle of tilt does not vary