Explanation:
The planets never travel in a straight line as they orbit the Sun. According to Newton's second law of motion, this must mean that: Your Answer: <em><u>The planets have angular momentum.'</u></em>
<em><u /></em>
<em><u>HOPE THAT HELPS YOU.</u></em>
<em><u>MARK ME BRINILYLIST</u></em>
<em><u>HAPPY HOLIDAYS</u></em>
Remember Dark Energy is repulsive, the more the faster the universe expands (indeed accelerates), so the faster it would cool down and increase its size, not the other way. Now, no one knows what it is. For instance, if Dark Energy would rather be some other geometric effect, it could have a different ending than just if it is a cosmological constant term. So far, though, all experimental data do not favor anything else that is not compatible with just a cosmological constant ... We'll need to wait few years (~10 years) to get to know much better this with missions and ground experiments that are undergoing or planned to be launched.
Answer 1) The electric field at distance r from the thread is radial and has magnitude
E = λ / (2 π ε° r)
The electric field from the point charge usually is observed to follow coulomb's law:
E = Q / (4 π ε°
)
Now, adding the two field vectors:
= {2.5 / (22 π ε° X 0.07 ) ; 0}
Answer 2)
= {2.3 / (4 2 π ε°) ( - 7/ (√(84); -12 / (√84))
Adding these two vectors will give the length which is magnitude of the combined field.
The y-component / x-component gives the tangent of the angle with the positive x-axes.
Please refer the graph and the attachment for better understanding.
Answer:
Short circuit
Explanation:
The given figure shows a short circuit. It is defined as the circuit which allows the flow of electric current when there is no resistance. It shows a battery, bulb and connecting wires.
The wire across the bulb is connected from one terminal to another without any resistance in between them.
So, the correct option is (d) " short circuit ".
Answer:
Simply,
<u>electrons</u> are "PARTICLES" orbiting the atoms, where, <u>current</u><u> </u>is the FLOW of some (free-to-move-around) electrons in a wire...