Let F be the magnitude of the frictional force. This force performs an amount of work W on the bullet such that
W = -Fx
where x is the distance over which F is acting. This is the only force acting on the bullet as it penetrates the tree. The work-energy theorem says the total work performed on a body is equal to the change in that body's kinetic energy, so we have
W = ∆K
-Fx = 0 - 1/2 mv²
where m is the body's mass and v is its speed.
Solve for F and plug in the given information:
F = mv²/(2x)
F = (0.00426 kg) (881 m/s)² / (2 (0.0444 m))
F = 37,234.8 N ≈ 37.2 kN
Answer:
50 m/s
Explanation:
Angle = 60 degree
Horizontal component of velocity = 50 m/s
A projectile motion is the motion of an object in two dimensions under the influence of gravity.
In this case, the object has no acceleration along horizontal direction, it has acceleration in vertical direction which is equal to the acceleration due to gravity of earth.
When the projectile reaches at the maximum height it travels only along the horizontal and thus it has only horizontal velocity at that instant.
Thus, the velocity of teh projectile at maximum height is same as horizontal component of velocity that meas 50 m/s.
Answer:
omg i need help with the same answer lol
Explanation:
i wish i can help but i need help on this hehe
You literally just put your fingers in your genitals? is this for a sex ed course...?
Answer:
The current through the inductor at the end of 2.60s is 9.7 mA.
Explanation:
Given;
emf of the inductor, V = 41.0 mV
inductance of the inductor, L = 13 H
initial current in the inductor, I₀ = 1.5 mA
change in time, Δt = 2.6 s
The emf of the inductor is given by;

Therefore, the current through the inductor at the end of 2.60 s is 9.7 mA.