Realtor does all of the above items
The goalkeeper at his goal cannot kick a soccer ball into the opponent’s goal without the ball touching the ground
Explanation:
Consider the vertical motion of ball,
We have equation of motion v = u + at
Initial velocity, u = u sin θ
Final velocity, v = 0 m/s
Acceleration = -g
Substituting
v = u + at
0 = u sin θ - g t

This is the time of flight.
Consider the horizontal motion of ball,
Initial velocity, u = u cos θ
Acceleration, a =0 m/s²
Time,
Substituting
s = ut + 0.5 at²

This is the range.
In this problem
u = 30 m/s
g = 9.81 m/s²
θ = 45° - For maximum range
Substituting

Maximum horizontal distance traveled by ball without touching ground is 45.87 m, which is less than 95 m.
So the goalkeeper at his goal cannot kick a soccer ball into the opponent’s goal without the ball touching the ground
Did you try looking it up ?
Start by facing East. Your first displacement is the vector
<em>d</em>₁ = (225 m) <em>i</em>
Turning 90º to the left makes you face North, and walking 350 m in this direction gives the second displacement,
<em>d</em>₂ = (350 m) <em>j</em>
Turning 30º to the right would have you making an angle of 60º North of East, so that walking 125 m gives the third displacement,
<em>d</em>₃ = (125 m) (cos(60º) <em>i</em> + sin(60º) <em>j</em> )
<em>d</em>₃ ≈ (62.5 m) <em>i</em> + (108.25 m) <em>j</em>
The net displacement is
<em>d</em> = <em>d</em>₁ + <em>d</em>₂ + <em>d</em>₃
<em>d</em> ≈ (287.5 m) <em>i</em> + (458.25 m) <em>j</em>
and its magnitude is
|| <em>d</em> || = √[ (287.5 m)² + (458.25 m)² ] ≈ 540.973 m ≈ 541 m