Answer:
7.62
Explanation:
because you have to divide 32/4.2
and can you do a friend request so i can accept it
Answer:
v = 6i + 12j + 4k
Explanation:
Find the magnitude of the direction vector.
√(3² + 6² + 2²) = 7
Normalize the direction vector.
3/7 i + 6/7 j + 2/7 k
Multiply by the magnitude of v.
v = 14 (3/7 i + 6/7 j + 2/7 k)
v = 6i + 12j + 4k
Explanation:
initial velocity U = 20m/s
Final velocity V = 35m/s
time = 15.0 secs
change in velocity = 35 - 15
= 20m/s
acceleration a = change in velocity/time V/t
a = (35-20)/15
a= 15/15
Hence, your acceleration is 1m/s^2
The correct answer is:
<span>C) The actual frequency of the siren does not change despite appearances.
In fact, Bob will observe an increase in the apparent frequency as the emergency vehicle approaches him, while Jill will observe a decrease in the apparent frequency as the emergency vehicle moves away from him, because of the Doppler effect (the relative velocity between the observer and the source of the sound is changing), but this effect involves the apparent frequency, while the real frequency of the siren will remain the same.</span>
To solve this problem, we will apply the concepts related to the kinematic equations of linear motion, which define speed as the distance traveled per unit of time. Subsequently, the wavelength is defined as the speed of a body at the rate of change of its frequency. Our values are given as,



Velocity of the wave,



Wavelength of the wave,




Therefore the wavelength of the waves on the string is 11.53 cm