The resistance of a given conductor depends on its electrical resistivity (), its length(L) and its cross-sectional area (A), as follows:
In this case, we have , and . So, the total resistance of the wire with length of 138m is:
The moment of inertia of a point mass about an arbitrary point is given by:
I = mr²
I is the moment of inertia
m is the mass
r is the distance between the arbitrary point and the point mass
The center of mass of the system is located halfway between the 2 inner masses, therefore two masses lie ℓ/2 away from the center and the outer two masses lie 3ℓ/2 away from the center.
The total moment of inertia of the system is the sum of the moments of each mass, i.e.
I = ∑mr²
The moment of inertia of each of the two inner masses is
I = m(ℓ/2)² = mℓ²/4
The moment of inertia of each of the two outer masses is
I = m(3ℓ/2)² = 9mℓ²/4
The total moment of inertia of the system is
I = 2[mℓ²/4]+2[9mℓ²/4]
I = mℓ²/2+9mℓ²/2
I = 10mℓ²/2
I = 5mℓ²
Answer: force = mass x accelegation
Explanation: 15x3 = 45 N
Tell her meteors and stars aren't related a stars life time is extremely long and meteors are just rocks floating through space when they fly be the earth they can appear like falling stars but they aren't her fave constellation wont be going away any time soon