Answer:
According to the data given in the question, experiment on table two pulling and falling masses are arranged in the fig. 250 g is pulling right side and 100 g pulling down. The gravitational force is common to both the masses, so we cannot say that the block moves towards heavier mass, also the block does not move towards the lighter mass.
Obviously, the effect of heavier mass of 250 g is more on the block, so the block moves towards right bottom corner. i.e., diagonally between two masses
please find the attachment.
Answer:
18.9 <em>N or </em><em>19</em><em> N </em>rounded
Explanation:
m = 0.145 kg
a = 130 m/s^2
F = ma = (0.145 kg)(130 m/s^2) = 18.9 <em>N</em>
Why is it important that your finger be wet if you intend to touch it briefly to a hot clothes iron to test its temperature. If your finger is wet, some of the heat transmitted to your finger will be given to the water which has a high specific heat capacity and also a larger latent heat of vaporization.
#carryonlearning
Answer:
As the ball falls from C to E, potential energy is converted to kinetic energy. The velocity of the ball increases as it falls, which means that the ball attains its greatest velocity, and thus its greatest kinetic energy
Explanation: