Answer:
a) The magnitude of the force is 968 N
b) For a constant speed of 30 m/s, the magnitude of the force is 1,037 N
Explanation:
<em>NOTE: The question b) will be changed in other to give a meaningful answer, because it is the same speed as the original (the gallons would be 1.9, as in the original).</em>
Information given:
d = 106 km = 106,000 m
v1 = 28 m/s
G = 1.9 gal
η = 0.3
Eff = 1.2 x 10^8 J/gal
a) We can express the energy used as the work done. This work has the following expression:
Then, we can derive the magnitude of the force as:
b) We will calculate the force for a speed of 30 m/s.
If the force is proportional to the speed, we have:
The angular speed is defined as:
<h2> ω=
</h2>
where
Answer:
<u>Electromagnetic introduction</u> is the production of an electromotive force (voltage) across an electrical conductor in a changing magnetic field.
- <em><u>Step up transformers</u></em><u> is</u> a transformer in which the output (secondary) voltage is greater than its input (primary) voltage is called a step-up transformer. The step-up transformer decreases the output current for keeping the input and output power of the system equal.
- <u><em>Step down transformer is </em></u><em>a transformer in which the output (secondary) voltage is less than its input (primary) voltage is called a step-down transformer. The number of turns on the primary of the transformer is greater than the turn on the secondary of the transformer.</em>
<em />
<u>The difference between them:</u>
A transformer is a static device which transfers a.c electrical power from one circuit to the other at the same frequency, but the voltage level is usually changed. For economical reasons, electric power is required to be transmitted at high voltage whereas it has to be utilized at low voltage from a safety point of view. This increase in voltage for transmission and decrease in voltage for utilization can only be achieved by using a step-up and step-down transformer.
Hopefully this helped.