To solve this problem we will apply the concepts of the Magnetic Force. This expression will be expressed in both the vector and the scalar ways. Through this second we can directly use the presented values and replace them to obtain the value of the magnitude. Mathematically this can be described as,


Here,
q = Charge
v = Velocity
B = Magnetic field

Our values are given as,




Replacing,


Therefore the size of the magnetic force acting on the bumble bee is 
Answer:
-35 m/s
Explanation:
Momentum is conserved.
Momentum before firing = momentum after firing
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
Before the bullet is fired, the bullet and rifle have no velocity, so u₁ and u₂ are 0.
0 = m₁v₁ + m₂v₂
Given m₁ = 0.7 kg, v₁ = 350 m/s, and m₂ = 7 kg:
0 = (0.7 kg) (350 m/s) + (7 kg) v
v = -35 m/s
The rifle recoils at 35 m/s in the opposite direction.
Answer:
Option D is correct.
Explanation:
Bmax = Emax / c
The general form for electromagnetic wave equation is
E = jEmax ×cos(kx-wt)
We were given
(360V/m) sin[ (6.00×1015rad/s)t + (1.96×107rad/m)x ].
So from the equation above
Emax = 360V/m
Bmax = 360/(3×10⁸) = 1.2 ×10‐⁶ T.
Answer:
The time depends on the distance that they have to travel

Explanation:
The only horizontal force exerts over the car and you, it is the force that your friend is applied
Newton's Second Law of Motion defines the relationship between acceleration, force, and mass, thus

550 = 1430a
a = 0.3846 m/s2
The car and you have a motion under constant acceleration, then theirs position to a time-based is:

By the initial conditions


The time depends on the distance that they have to travel
This would be a funny game.
Inertia, according to first Law of Newton, means that when you throw a ball it will continue moving unless a force acts over it.
Without inertia, the ball instead of continue moving, would stop as soon as it leaves your hand or foot. You had to stay pasted to the ball unitl it reaches the desired destiny for it continue moving.