1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inna [77]
3 years ago
11

A box rests on top of a flat bed truck. The box has a mass of m = 16.0 kg. The coefficient of static friction between the box an

d truck is ?s = 0.87 and the coefficient of kinetic friction between the box and truck is ?k = 0.69.
1) The truck accelerates from rest to vf = 17.0 m/s in t = 13.0 s (which is slow enough that the box will not slide). What is the acceleration of the box?
2) In the previous situation, what is the frictional force the truck exerts on the box?
3) What is the maximum acceleration the truck can have before the box begins to slide?
4) Now the acceleration of the truck remains at that value, and the box begins to slide. What is the acceleration of the box?
5) With the box still on the truck, the truck attains its maximum velocity. As the truck comes to a stop at the next stop light, what is the magnitude of the maximum deceleration the truck can have without the box sliding?
Physics
1 answer:
3241004551 [841]3 years ago
3 0

Answer:

1) 1.31 m/s2

2) 20.92 N

3) 8.53 m/s2

4) 1.76 m/s2

5) -8.53 m/s2

Explanation:

1) As the box does not slide, the acceleration of the box (relative to ground) is the same as acceleration of the truck, which goes from 0 to 17m/s in 13 s

a = \frac{\Delta v}{\Delta t} = \frac{17 - 0}{13} = 1.31 m/s2

2)According to Newton 2nd law, the static frictional force that acting on the box (so it goes along with the truck), is the product of its mass and acceleration

F_s = am = 1.31*16 = 20.92 N

3) Let g = 9.81 m/s2. The maximum static friction that can hold the box is the product of its static coefficient and the normal force.

F_{\mu_s} = \mu_sN = mg\mu_s = 16*9.81*0.87 = 136.6N

So the maximum acceleration on the block is

a_{max} = F_{\mu_s} / m = 136.6 / 16 = 8.53 m/s^2

4)As the box slides, it is now subjected to kinetic friction, which is

F_{\mu_s} = mg\mu_k = 16*9.81*0.69 = 108.3 N

So if the acceleration of the truck it at the point where the box starts to slide, the force that acting on it must be at 136.6 N too. So the horizontal net force would be 136.6 - 108.3 = 28.25N. And the acceleration is

28.25 / 16 = 1.76 m/s2

5) Same as number 3), the maximum deceleration the truck can have without the box sliding is -8.53 m/s2

You might be interested in
A section of a parallel-plate air waveguide with a plate separation of 7.11 mm is constructed to be used at 15 GHz as an evanesc
adell [148]

Answer:

the required minimum length of the attenuator is 3.71 cm

Explanation:

Given the data in the question;

we know that;

f_{c_1 = c / 2a

where f is frequency, c is the speed of light in air and a is the plate separation distance.

we know that speed of light c = 3 × 10⁸ m/s = 3 × 10¹⁰ cm/s

plate separation distance a = 7.11 mm = 0.0711 cm

so we substitute

f_{c_1 = 3 × 10¹⁰ / 2( 0.0711  )

f_{c_1 = 3 × 10¹⁰ cm/s / 0.1422  cm

f_{c_1 =  21.1 GHz which is larger than 15 GHz { TEM mode is only propagated along the wavelength }

Now, we determine the minimum wavelength required

Each non propagating mode is attenuated by at least 100 dB at 15 GHz

so

Attenuation constant TE₁ and TM₁ expression is;

∝₁ = 2πf/c × √( (f_{c_1 / f)² - 1 )

so we substitute

∝₁ = ((2π × 15)/3 × 10⁸ m/s) × √( (21.1 / 15)² - 1 )

∝₁ = 3.1079 × 10⁻⁷

∝₁ = 310.79 np/m

Now, To find the minimum wavelength, lets consider the design constraint;

20log₁₀e^{-\alpha _1l_{min = -100dB

we substitute

20log₁₀e^{-(310.7np/m)l_{min = -100dB

l_{min = 3.71 cm

Therefore, the required minimum length of the attenuator is 3.71 cm

6 0
3 years ago
a plane is flying due east in still air at 395 km/h. suddenly, the plane is hit by wind blowing at 55km/h toward the west. what
Sphinxa [80]
Let's be clear:  The plane's "395 km/hr" is speed relative to the
air, and the wind's "55 km/hr" is speed relative to the ground.

Before the wind hits, the plane moves east at 395 km/hr relative
to both the air AND the ground.

After the wind hits, the plane still maintains the same air-speed.
That is, its velocity relative to the air is still 395 km/hr east.
But the wind vector is added to the air-speed vector, and the
plane's velocity <span>relative to the ground drops to 340 km/hr east</span>.

6 0
3 years ago
8. An airplane is flying at 200 m/s when it touches the ground at the airport. It has a constant negative acceleration, and slow
Temka [501]

Answer:

Explanation:

Given

Initial velocity u = 200m/s

Final velocity = 4m/s

Distance S = 4000m

Required

Acceleration

Substitute the given parameters into the formula

v² = u²+2as

4² = 200²+2a(4000)

16 = 40000+8000a

8000a = 16-40000

8000a = -39,984

a = - 39,984/8000

a = -4.998m/s²

Hence the acceleration is -4.998m/s²

8 0
3 years ago
Why aren't humans as evolved as we think we are?
bezimeni [28]
Well there is many ways we are not evolved as much as we think we are from being we die from a lot of diseases to world hunger and other things to be honest humans are far from being really evolved in life we really need to focus on cures and solving world hunger and fighting among ourselves 

Hope this helps
8 0
3 years ago
Would water molecules in Venus’ atmosphere, whose temperature is 740 K, escape into outer space? A water molecule has a mass tha
Akimi4 [234]

Answer:

The water molecule cannot escape, since the average velocity of the water molecules is less than one sixth of the escape velocity of venus.

Explanation:

The average speed of gas molecules is given by:

v_{rms}=\sqrt{\frac{3RT}{M}}

R is the gas constant, T is the temperature and M the molar mass of the gas.

We know that a water molecule has a mass that is 18 times that of a hydrogen atom:

M_H=1.01*10^{-3}\frac{kg}{mol}\\M_{H2O}=18M_H=0.02\frac{kg}{mol}

So, we have:

v_{rms}=\sqrt{\frac{3(8.314\frac{J}{mol \cdot K})740K}{0.02\frac{kg}{mol}}}\\v_{rms}=960.65\frac{m}{s}*\frac{1km}{1000m}=0.96\frac{km}{s}

The water molecule cannot escape, since the average velocity of the water molecules is less than one sixth of the escape velocity of venus:

10\frac{km}{s}*\frac{1}{6}=1.6\frac{km}{s}\\0.96\frac{km}{s}

4 0
3 years ago
Other questions:
  • Light shines through a single slit whose width is 5.7 x 10-4 m. A diffraction pattern is formed on a flat screen located 4.0 m a
    5·1 answer
  • A mass is measured as 6.2 kg in one experiment and as 6.20 kg in another. in what way do these measurements differ​
    11·1 answer
  • A car traveling east at 46.8 m/s passes a trooper hiding at the roadside. the driver uniformly reduces his speed to 25.0 m/s in
    11·1 answer
  • Please solve for me am confused​
    10·1 answer
  • Usually the hull of a ship contains a large volume of air. Why?
    6·1 answer
  • The 45-g arrow is launched so that it hits and embeds in a 1.40 kg block. The block hangs from strings. After the arrow joins th
    11·1 answer
  • The magnetic flux that passes through one turn of a 18-turn coil of wire changes to 2.67 from 8.19 Wb in a time of 0.0386 s. The
    7·1 answer
  • Which of the following describes qualitative data?
    6·1 answer
  • A force transmitted through a string or rope is called what
    7·2 answers
  • According to the law of conservation of energy, which statement must be
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!