Answer : 
Explanation :
Given that
Radius of sphere 
The distance between the centers of the two spheres is

The charge of the sphere 
The magnitude of the repulsive force between the charges pushing them a part is
Using coulomb law




Hence, this is the required solution.
Answer:
D). energy resulting from the attraction between two masses.
Explanation:
Answer:
Force exerted, F = 1.5 N
Explanation:
It is given that, a boxer punches a sheet of paper in midair and brings it from rest up to a speed of 30 m/s in 0.060 s.
i.e. u = 0
v = 30 m/s
Time taken, t = 0.06 s
Mass of the paper, m = 0.003 kg
We need to find the force the boxer exert on it. The force can be calculated using second law of motion as :



F = 1.5 N
So, the force the boxer exert on the paper is 1.5 N. Hence, this is the required solution.
Water boiling, no cheamical bonds have been altered.
Answer:
4.6 years
Explanation:
This is solved using Kepler's third law which says:

Where
T = Orbital period of the planet (in seconds)
a = Distance from the star (in meters)
G = Gravitational constant
M = Mass of the parent star (in kg)
From the information given



We put this into Kepler's law and get:

This when converted to years is 4.6 years.