At sea level, you're 6400 km away from the earth's center. Where gravity is 0.4 fewer,
in other words 0.6 its sea level value, you're x km from the center, where:
(6400 / x) ^ 2 = 0.6)
Take note that gravity is an opposite square force.
So 6400 / x = 0.7746
so x = 8262 km from the Earth's center
so you're 8262 – 6400 = 1862 km above the Earth's surface
The rhythmic movement that carries energy through space or matter is called a Wave
The application is when human produce electromagnetic Radiation which now known as the Radio.
so the answer is d.
If the ball does not have a propeller or jet engine on it, then it is an object
in free fall. That means its downward speed grows by 9.8 m/s for every
second that it's in the air.
If it happens to be traveling upward at the moment, then that won't last long.
Its upward speed is decreasing by 9.8 m/s every second. It will eventually
run out of upward gas and start moving downward. At that instant, you might
say that the direction of its velocity has changed by 180 degrees.
Answer:
The value is 
Explanation:
From the question we are told that
The total time of flight is
Generally from kinematic equation

So v is the velocity at maximum height and the value is v = 0 m/s
So

=> 
Here u is the initial velocity of the dart as it leaves that gun
Gnerally the horizontal range of the dart is mathematically represented as

For maximum horizontal range the value of
So

=> 
The initial velocity is
v(0) = 16.5 ft/s
While in the water, the acceleration is
a(t) = 10 - 0.
![\frac{dv}{dt} =10-0.8v \\\\ \frac{dv}{10-0.8v}=dt \\\\ \int_{16.5}^{v} \, \frac{dv}{10-0.8v} = \int_{0}^{t} dt \\\\ - \frac{1}{0.8} [ln(10-0.8v)]_{16.5}^{v}=t \\\\ ln \frac{10-0.8v}{-3.2}=-0.8t \\\\ \frac{0.8v -10}{3.2} =e^{-0.8t} \\\\ 0.8v = 10 + 3.2e^{-0.8t} \\\\ v=12.5+4e^{-0.08t}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bdv%7D%7Bdt%7D%20%3D10-0.8v%20%5C%5C%5C%5C%20%20%5Cfrac%7Bdv%7D%7B10-0.8v%7D%3Ddt%20%5C%5C%5C%5C%20%5Cint_%7B16.5%7D%5E%7Bv%7D%20%5C%2C%20%20%5Cfrac%7Bdv%7D%7B10-0.8v%7D%20%20%3D%20%5Cint_%7B0%7D%5E%7Bt%7D%20dt%20%5C%5C%5C%5C%20-%20%5Cfrac%7B1%7D%7B0.8%7D%20%5Bln%2810-0.8v%29%5D_%7B16.5%7D%5E%7Bv%7D%3Dt%20%5C%5C%5C%5C%20ln%20%5Cfrac%7B10-0.8v%7D%7B-3.2%7D%3D-0.8t%20%5C%5C%5C%5C%20%20%5Cfrac%7B0.8v%20-10%7D%7B3.2%7D%20%20%3De%5E%7B-0.8t%7D%20%5C%5C%5C%5C%200.8v%20%3D%2010%20%2B%203.2e%5E%7B-0.8t%7D%20%5C%5C%5C%5C%20v%3D12.5%2B4e%5E%7B-0.08t%7D)
The velocity function is

It satisfies the condition that v(0) = 16.5 ft/s.
When t = 5.7s, obtain

The depth of the lake is
![d=\int_{0}^{5.7} \, (12.5+4e^{-0.8t})dt \\\\ = 12.5(5.7)+ \frac{4}{(-0.8)}[e^{-0.8t}]_{0}^{5.7} \\\\ =71.25-5(0.0105-1) =76.198 \, ft](https://tex.z-dn.net/?f=d%3D%5Cint_%7B0%7D%5E%7B5.7%7D%20%5C%2C%20%2812.5%2B4e%5E%7B-0.8t%7D%29dt%20%5C%5C%5C%5C%20%3D%2012.5%285.7%29%2B%20%5Cfrac%7B4%7D%7B%28-0.8%29%7D%5Be%5E%7B-0.8t%7D%5D_%7B0%7D%5E%7B5.7%7D%20%5C%5C%5C%5C%20%3D71.25-5%280.0105-1%29%20%3D76.198%20%5C%2C%20ft)
Answer:
The velocity at the bottom of the lake is 12.5 ft/s
The depth of the lake is 76.2 ft