The ball only accelerates during the brief time that the club is in contact
with it. After it leaves the club face, it takes off at a constant speed.
If it accelerates at 20 m/s² during the hit, then
Force = (mass) x (acceleration) = (0.2kg) x (20 m/s²) = <em>4 newtons</em> .
Metamorphic rock this possess often occurs in the mantle
Answer:
2856.96 J
0
0

6.78822 m/s
Explanation:
= Initial velocity = 9.6 m/s
g = Acceleration due to gravity = 9.81 m/s²
h = Height
The athlete only interacts with the gravitational potential energy. Air resistance is neglected.
At height y = 0
Kinetic energy

At height y = 0 the potential energy is 0 as

At maximum height her velocity becomes 0 so the kinetic energy becomes zero.
As the the potential and kinetic energy are conserved
The general equation

Half of maximum height



The velocity of the athlete at half the maximum height is 6.78822 m/s
Ans) A) Centripetal force will be doubled.
See centripetal force F = mv^2/r
That means centripetal force is directly proportional to the mass of the particle
So, if we double the mass, centripetal force will be increased by twofolds.
So, option A) is correct.
Now, looking at the other options,
B) says centripetal force is unaltered which is incorrect as centripetal force has been altered and increased twofold.
Option C) and D) reduces centripetal force which are also not possible here.
So, only Option A) is correct