The answer is B: energy is transferred, but it can go to the products or the reactants.
Question: In which situation would a space probe most likely experience centripetal acceleration?
as it revolves around a planet
as it flies straight past a moon
as it is pulled in a line toward the Sun
as it lifts off from Earth
Answer:
When "space probe revolves around a planet" most likely to experience centripetal acceleration
Explanation:
Centripetal acceleration defined as the rate in change of tangential velocity. Also, as per Newton's second law, any kind of force will be directly proportional to the acceleration attained by the object. So, for centripetal acceleration, the force will be the centripetal force. The centripetal force will be acting on an object rotating in a circular motion with its direction of force towards the center. Thus, centripetal acceleration will be experienced by an object or a space probe when it is in a circular motion. It means the space probe is revolving around a planet.
Answer:
when a person is not breathing
Explanation:
The electrocardiogram shows the cardiac action of the heart as a means of the sinusoidal waves. However, the waves have a different structure as they show the pumping phase, breathing and the resting phase of the heart. The waves continues to be displayed as long as there is systolic and diastolic pressure in the heart muscles. When there is no action, such as the cessation of brain activity, action ceases.
Explanation:
Center of gravity , Let center of rod is origin
= 
=15.71cm from the center of rod
Answer:
The maximum static frictional force is 40N.
Explanation:
When an object of mass M is on a surface with a coefficient of static friction μ, there is a minimum force that you need to apply to the object in order to "break" the coefficient of static friction and be able to move the object (Called the threshold of motion, once the object is moving we have a coefficient of kinetic friction, which is smaller than the one for static friction).
This coefficient defines the maximum static friction force that we can have.
So if we apply a small force and we start to increase it, the static frictional force will be equal to our force until it reaches its maximum, and then we can move the object and now we will have frictional force.
In this case, we know that we apply a force of 40N and the object just starts to move.
Then we can assume that we are just at the point of transition between static frictional force and kinetic frictional force (the threshold of motion), thus, 40 N is the maximum of the static frictional force.