Answer:
1110 N
Explanation:
First, find the acceleration.
Given:
Δx = 300 m
v₀ = 85.5 km/h = 23.75 m/s
v = 0 m/s
Find: a
v² = v₀² + 2aΔx
(0 m/s)² = (23.75 m/s)² + 2a (300 m)
a = -0.94 m/s²
Find the force:
F = ma
F = (1180 kg) (-0.94 m/s²)
F = -1110 N
The magnitude of the force is 1110 N.
Most of the momentum is transferred to the ball on top. Since the collision in this situation is elastic, momentum is conserved, meaning the momentum of both balls before hitting the floor is equal to the momentum of both balls right after the collision.
Answer:
100 times
Explanation:
Since inertia is directly proportional to the mass of an object, the higher the mass the higher the inertia. In this case, 6 Kg is 100 times heavier than 0.06 Kg to imply The bowling ball has 100 times more inertia than the tennis ball because it has 100 times more mass