<span>We can assume that the horizontal surface has no friction and the pulley is massless. We can use Newton's second law to set up an equation.
F = Ma
F is the net force
M is the total mass of the system
a is the acceleration
a = F / M
a = (mb)(g) / (ma + mb)
a = (6.0 kg)(9.80 m/s^2) / (6.0 kg + 14.0 kg)
a = 58.8 N / 20 kg
a = 2.94 m/s^2
The magnitude of the acceleration of the system is 2.94 m/s^2</span>
Answer:
The reason that it takes longer to get the water to boiling temperature than it is to cool it down again is because heating in the most simple sense is inefficient and will cause a lot if energy lost while cooling is to be turn's into quite a efficient process.
Explanation:
Answer:
9.39 m/s
Explanation:
Using the y-direction, we can solve for the time t it takes for the cart to reach the ground.
Assume the up direction is positive and the down direction is negative.
- v₀ = 0 m/s
- a = -9.8 m/s²
- Δy = -50 m
- t = ?
Find the constant acceleration equation that contains these four variables.
Substitute known values into this equation.
Multiply and simplify.
Divide both sides of the equation by -4.9.
Square root both sides of the equation.
Now we can use this time t and solve for v₀ in the x-direction. Time is most often our link between vertical and horizontal components of projectile motion.
List out known variables in the x-direction.
- v₀ = ?
- t = 3.194382825 s
- a = 0 m/s²
- Δx = 30 m
Find the constant acceleration equation that contains these four variables.
Substitute known values into the equation.
- 30 = (v₀ · 3.194382825) + 1/2(0)(3.194382825)²
Multiply and simplify.
Divide both sides of the equation by 3.194382825.
The cart was rolling at a velocity of 9.39 m/s (initial velocity) when it left the ledge.
Answer:
It is one of the 7 diatomics
Explanation:
Br
I
N
Cl
H
O
F
^ these are the 7 diatomic molecules. Atoms of these elements exist as a molecule consisting of two covalently bonded atoms of the same element.
Simply put, for these elements, the diatomic state of the atom is much more stable than the unbound one.
4184 joules is one calorie