(A) The total initial momentum of the system is
(1.30 kg) (27.0 m/s) + (23.0 kg) (0 m/s) = 35.1 kg•m/s
(B) Momentum is conserved, so that the total momentum of the system after the collision is
35.1 kg•m/s = (1.30 kg + 23.0 kg) <em>v</em>
where <em>v</em> is the speed of the combined blocks. Solving for <em>v</em> gives
<em>v</em> = (35.1 kg•m/s) / (24.3 kg) ≈ 1.44 m/s
(C) The kinetic energy of the system after the collision is
1/2 (1.30 kg + 23.0 kg) (1.44 m/s)² ≈ 25.4 J
and before the collision, it is
1/2 (1.30 kg) (27.0 m/s)² ≈ 474 J
so that the change in kinetic energy is
∆<em>K</em> = 25.4 J - 474 J ≈ -449 J
I believe that the correct given values are:
density = 755 kg/m^3
volume = 640 cm^3
First let us convert volume to m^3 units.
volume = 640 cm^3 * (1 m / 100 cm)^3 = 6.4 x 10^-4 m^3
so the mass is:
mass = 755 kg/m^3 * (6.4 x 10^-4 m^3)
<span>mass = 0.4832 kg = 483.2 g</span>
Explanation:
Acceleration and the other term are the same physical phenomenon - just with opposite affects. Acceleration increases velocity, while the other term that begins with the letter "R" reduces.
***(Brainly's language filter is blocking the use of the second term in my answer.)***
Acceleration is defined as the rate of change of the velocity of an object per unit of time...

Acceleration would be a POSITIVE (+) quantity, while the r-word would be negative (-).
Answer:
<h2>352.8 Joules</h2>
Explanation:
The potential energy of a body can be found by using the formula
PE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 9.8 m/s²
From the question we have
PE = 3 × 9.8 × 12
We have the final answer as
<h3>352.8 J</h3>
Hope this helps you
From the information given and if the question is complete then;
Absolute temperature is the temperature in Kelvin
To convert degree Celsius to kelvin we normally add 273
that is Kelvin = deg Celsius + 273
Thus since we have been given that the air was at -70 degrees celcius;
then; - 70° C + 273 = 203 K
Therefore; the absolute temperature is 203 K