Answer:
Technician B
Explanation:
The brakes can lockup due to the following reasons
1) Overheating break systems
2) Use of wrong brake fluid
3) Broken or damaged drum brake backing plates, rotors, or calipers
4) A defective ABS part, or a defective parking mechanism or proportioning valve
5) Brake wheel cylinders, worn off
6) Misaligned power brake booster component
When a psychologist simply records the relationship between two variables without manipulating them, it is called a correlational study.
The observed relationship does not by itself reveal which variable causes the other. This is the directionally problem. Also, the relationship may be due to a third variable controlling both of the observed variables.
Complete Question
The cars of a roller-coaster ride have a speed of 19.0 km/h as they pass over the top of the circular track. Neglect any friction and calculate their speed v when they reach the horizontal bottom position. At the top position, the radius of the circular path of their mass centers is 21 m, and all six cars have the same mass.V = -18 m What is v?X km/h
Answer:

Explanation:
Velocity 
Radius 
initial velocity u
Generally the equation for Angle is mathematically given by




Generally
Height of mass



Generally the equation for Work Energy is mathematically given by

Therefore



Answer:
0.023 Pa*s
Explanation:
The surface area of the side of the inner cylinder is:
A = π*d*l
A = π*0.15*0.75 = 0.35 m^2
At 200 rpm the inner cylinder has a tangential speed of:
u = w * r
u = w * d/2
w = 200 rpm * 2π / 60 = 20.9 rad/s
u = 20.9 * 0.15 / 2 = 1.57 m/s
The torque is of 0.8 N*m, this means that the force is:
T = F * r
F = T / r
F = 2*T / d
For Newtoninan fluids with two plates moving respect of each other with a fluid between the viscous friction force would be:
F = μ*A*u / y
Where
μ: viscocity
y: separation between pates
A: surface area of the plates
Then:
2*T / d = μ*A*u/y
Rearranging:
μ = 2*T*y / (d*A*u)
μ = 2*0.8*0.0012 / (0.15*0.35*1.57) = 0.023 Pa*s
Answer:
the critical flaw length is 10.06 mm
Explanation:
Given the data in the question;
plane strain fracture toughness
= 92 Mpa√m
yield strength σ
= 900 Mpa
design stress is one-half of the yield strength ( 900 Mpa / 2 ) 450 Mpa
Y = 1.15
we know that;
Critical crack length
= 1/π(
/ Yσ )²
we substitute
= 1/π( 92 Mpa√m / (1.15 × 450 Mpa )²
= 1/π( 92 Mpa√m / (517.5 Mpa )²
= 1/π( 0.177777 )²
= 1/π( 0.03160466 )
= 0.01006 m = 10.06 mm
Therefore, the critical flaw length is 10.06 mm
{
= ( 10.06 mm ) > 3 mm
The critical flow is subject to detection