Answer:
Dispersion forces.
Explanation:
CO2 contains dispersion forces, and covalent bonds. It is a linear molecule, and the bond angle of O-C-O is 180 degree. O is more electronegative than C, the C-O contains polar bond with the having negative end pointing towards the O.
CO contains two C-O bonds. They cancel each other out because of the dipoles point in opposite directions. Although, CO2 contains polar bonds, it is known as a nonpolar molecule. So, the only intramolecular forces which CO2 having are London dispersion forces.
Answer:
Explanation:
There are some radioactive nuclides can be used to measure time on an archeological scale. One is the best example of this is radiocarbon dating. This process is based on the ratio of caebon-14 to carbon-12 in the atmosphere which is relatively constant.
The half time of C-14 5730 years
Carbon-14 is a radioactive nucleus. It has a half-life of 5730 years.
All living tissues like plants and animal absorbed carbon-12 along with carbon-14 with same ratio of caebon-14 to carbon-12 in the atmosphere.
Carbon-14 dating is based on the ratio of carbon-14 to carbon-12 in the atmosphere which is relatively constant
Answer:
The elements in the alkaline earth metals group; beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra), have two electrons in their outer electronic shell.
Explanation:
Answer:

Explanation:
The breakdown reaction of ozone is as follows




It can be seen that 2 moles of ozone is required in the complete cycle
So for 10 cycles, 20 moles of ozone is required
m = Mass of
= 15.5 g
M = Molar mass of
= 104.46 g/mol
P = Pressure = 24.5 mmHg
T = Temperature = 232 K
R = Gas constant = 
Number of moles is given by


From ideal gas law we have

For 20 cycles of the reaction the volume of the ozone is
.