Answer:
The answer is D. have a good day!
Explanation:
Answer:
134K
Explanation:
Using the ideal gas law equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (Litres)
n = number of moles (mol)
R = gas constant (0.0821 Latm/Kmol)
T = temperature (K)
Based on the information provided, n = 1.4moles, P = 3.25atm, V = 4.738L, T = ?
3.25 × 4.738 = 1.4 × 0.0821 × T
15.3985 = 0.11494T
T = 15.3985/0.11494
T = 133.969
Approximately;
T = 134K
Answer:
<u>132.15</u>
Explanation:
Molar mass N = 14.00
Molar mass H = 1.01
Molar mass H4 = 1.01 x 4 = 4.04
Molar mass NH4 = 14.00 + 4.04 = 18.04
Molar mass (NH4)2 = 18.04 x 2 = 36.08
Molar mass S = 32.07
Molar mass O = 16.00
Molar mass O4 = 16.00 x 4 = 64.00
Molar mass SO4 = 32.07 + 64.00 = 96.07
Molar mass (NH4)2SO4 = 36.08 + 96.07 = <u>132.14</u>
First, we write the half equations for the reduction of the chemical species present:
Cu⁺² + 2e → Cu; E° = 0.34 V
Ni⁺² + 2e → Ni; E° = - 0.23 V
In order to determine the potential of the cell, we find the difference between the two values. For this:
E(cell) = 0.34 - (-0.23)
E(cell) = 0.57 V
The second option is correct. (The difference in values is due to different values in literature, and it is negligible)
Answer & Explanation:
In physics, a contact force is a force that acts at the point of contact between two objects, in contrast to body forces. Contact forces are described by Newton's laws of motion, as with all other forces in dynamics. Contact force is the force in which an object comes in contact with another object. Contact forces are also direct forces. Contact forces are ubiquitous and are responsible for most visible interactions between macroscopic collections of matter. Pushing a car up a hill or kicking a ball or pushing a desk across a room are some of the everyday examples where contact forces are at work. In the first case the force is continuously applied by the person on the car, while in the second case the force is delivered in a short impulse.