1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vredina [299]
3 years ago
9

How much work is done if 10 N is applied to a 5kg object for 10 meters if there is an opposing force of 5 N

Physics
1 answer:
BlackZzzverrR [31]3 years ago
5 0

Answer:

50 J

Explanation:

The net force acting on the box is given by the algebraic sum of the two forces, so:

F=10 N -5 N = 5 N

The net work done on the box is equal to (assuming the net force is parallel to the displacement of the object)

W=Fd

where

F = 5 N is the net force on the object

d = 10 m is the displacement of the object

Substituting,

W=(5 N)(10 m)=50 J

You might be interested in
(1 point) A projectile is fired from ground level with an initial speed of 600 m/sec and an angle of elevation of 30 degrees. Us
konstantin123 [22]

Answer:

(a) The range of the projectile is 31,813.18 m

(b) The maximum height of the projectile is 4,591.84 m

(c) The speed with which the projectile hits the ground is 670.82 m/s.

Explanation:

Given;

initial speed of the projectile, u = 600 m/s

angle of projection, θ = 30⁰

acceleration due to gravity, g = 9.8 m/s²

(a) The range of the projectile in meters;

R = \frac{u^2sin \ 2\theta}{g} \\\\R = \frac{600^2 sin(2\times 30^0)}{9.8} \\\\R = \frac{600^2 sin (60^0)}{9.8} \\\\R = 31,813.18 \ m

(b) The maximum height of the projectile in meters;

H = \frac{u^2 sin^2\theta}{2g} \\\\H = \frac{600^2 (sin \ 30)^2}{2\times 9.8} \\\\H = \frac{600^2 (0.5)^2}{19.6} \\\\H = 4,591.84 \ m

(c) The speed with which the projectile hits the ground is;

v^2 = u^2 + 2gh\\\\v^2 = 600^2 + (2 \times 9.8)(4,591.84)\\\\v^2 = 360,000 + 90,000.064\\\\v = \sqrt{450,000.064} \\\\v = 670.82 \ m/s

5 0
3 years ago
An object of mass m is traveling in a circle with centripetal force Fc. If the velocity of the object is v, what is the radius o
borishaifa [10]

Hi there!

Recall the equation for centripetal force:
F_c = \frac{mv^2}{r}

We can rearrange the equation to solve for 'r'.

Multiply both sides by r:
r * F_c = mv^2

Divide both sides by Fc:
\boxed{ r= \frac{mv^2}{F_c}}

7 0
2 years ago
At locations A and B, the electric potential has the values VA = 1.83 V and VB = 5.17 V, respectively. A proton released from re
densk [106]

Answer:

a. It starts at point B.

vp = 2.53*10⁴ m/s

a. it starts at point A.

ve= 1.08*10⁶ m/s

Explanation:

a)  As the proton is a positive charge, when released from rest, it will be accelerated due to the potential difference, from the higher potential to the lower one, so it is at the point B when released.

Once released, as the total energy must be conserved, the increase in kinetic energy must be equal (in magnitude) to the change in the electric potential energy, as follows:

ΔK + ΔUe = 0 ⇒ ΔK = -ΔUe =- (e*ΔV)

⇒ -( e* (VA-VB) ) = \frac{1}{2}*mp*v^{2}

where e= elementary charge= 1.6*10⁻¹⁹ C,  VA = 1.83 V, VB= 5.17V, and mp= mass of proton = 1.67*10⁻²⁷ kg.

Replacing by these values, and solving for v, we have:

v = \sqrt{\frac{2*1.6e-19C*3.34 V}{1.67e-27kg} } = 2.53e4 m/s

⇒ vp = 2.53*10⁴ m/s

b) If, instead of a proton, the charge realeased from rest, had been an electron, a few things would change:

First, as the electrons carry negative charges, they move from the lower potentials to the higher ones, which means that it would have started at point A.

Second, as its charge is (-e) the change in electric potential energy had been negative also:

ΔUe = -e*ΔV = -e* (VB-VA)

In order to find the speed of the electron when it is just passing point B, we can apply the conservation of energy principle as for the proton, as follows:

-( (-e)* (VB-VA) ) = \frac{1}{2}*me*v^{2}

where e= elementary charge= 1.6*10⁻¹⁹ C,  VA = 1.83 V, VB= 5.17V, and me= mass of electron = 9.1*10⁻³¹ kg.

Replacing by these values, and solving for v, we have:

v = \sqrt{\frac{2*1.6e-19C*3.34 V}{9.1e-31kg} } = 1.08e6 m/s

⇒ ve = 1.08*10⁶ m/s

4 0
3 years ago
Pls help :3 ♥️ I rly need this turned in
Lerok [7]

Answer:

It does, it takes 50ml

Explanation:

5 0
3 years ago
Which of the following is a result of a change in pressure?
ioda
B. Exfoliation. Hope I helped you out bro.

7 0
3 years ago
Other questions:
  • When an atom absorbs energy, the electrons move from their _______ to an exited state?
    15·1 answer
  • An object speed is 7.2 m/s and its momentum is 360 kg m/s what is mass of object
    6·1 answer
  • A student of weight 652 N rides a steadily rotating Ferris wheel (the student sits upright). At the highest point, the magnitude
    15·1 answer
  • A dragster race car can accelerate from rest to incredible speeds. In one case a dragster is able to finish the 305 m run in 3.6
    7·1 answer
  • A plane travels 1743 KM in 2 hours 30 minutes. How fast was the plane traveling?
    7·1 answer
  • According to the first law of thermodynamics, what could happen when heat is added to a system?
    13·2 answers
  • Describe How the frequency of a wave changed s as it’s wavelength changes
    7·1 answer
  • You attach a 1.70 kg block to a horizontal spring that is fixed at one end. You pull the block until the spring is stretched by
    8·1 answer
  • WILL MARK BRAINLIEST!!!!!<br> How is the 3rd law different from the 1st and 2nd laws?
    15·1 answer
  • Mark all the units for speed
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!