Answer:
Explanation:
The gravitational force between two corpses is given by the following equation:
Where F is the force, G is the gravitational constant
(), M and m are the masses of the corpses and d is the distance between them.
So we have that:
- Speed is the rate of change of distance with time while velocity is the rate of change of displacement with time.
- Speed is a scalar quantity while velocity is a vector quantity.
- Speed cannot be negative but velocity can be negative.
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
4500 N
Explanation:
When a body is moving in a circular motion it will feel an acceleration directed towards the center of the circle, this acceleration is:
a = v^2/r
where v is the velocity of the body and r is the radius of the circumference:
Therefore, a body with mass m, will feel a force f:
f = m v^2/r
Therefore we need another force to keep the body(car) from sliding, this will be given by friction, remember that friction force is given a the normal times a constant of friction mu, that is:
fs = μN = μmg
The car will not slide if f = fs, i.e.
fs = μmg = m v^2/r
That is, the magnitude of the friction force must be (at least) equal to the force due to the centripetal acceleration
fs = (1000 kg) * (30m/s)^2 / (200 m) = 4500 N
Answer:
b. they get blown in from colder or warmer areas.
To solve this problem it is necessary to apply the concepts related to the flow as a function of the volume in a certain time, as well as the potential and kinetic energy that act on the pump and the fluid.
The work done would be defined as
Where,
PE = Potential Energy
KE = Kinetic Energy
Where,
m = Mass
g = Gravitational energy
h = Height
v = Velocity
Considering power as the change of energy as a function of time we will then have to
The rate of mass flow is,
Where,
= Density of water
A = Area of the hose
The given radius is 0.83cm or m, so the Area would be
We have then that,
Final the power of the pump would be,
Therefore the power of the pump is 57.11W