Answer:
(after two seconds)
(with no acceleration)
Explanation:
Givens
![m=3.14 \ kg](https://tex.z-dn.net/?f=m%3D3.14%20%5C%20kg)
![W=30 \ N](https://tex.z-dn.net/?f=W%3D30%20%5C%20N)
![v_{0} = 2.5 \ m/s](https://tex.z-dn.net/?f=v_%7B0%7D%20%3D%202.5%20%20%5C%20m%2Fs)
![\theta = 45\°](https://tex.z-dn.net/?f=%5Ctheta%20%3D%2045%5C%C2%B0)
(constant)
(friction)
![t= 2.0 \ sec](https://tex.z-dn.net/?f=t%3D%202.0%20%5C%20sec)
First, we have to find the speed after 2 seconds, when its initial speed is
. The acceleration can be found by using Newton's Second Law
Vertical forces:
![\sum F_{y}=W-F_{p_{y} } -F_{\mu} =ma_{y}](https://tex.z-dn.net/?f=%5Csum%20F_%7By%7D%3DW-F_%7Bp_%7By%7D%20%7D%20-F_%7B%5Cmu%7D%20%3Dma_%7By%7D)
Where
, which is deducted from the right angle formed (refer to the image attached).
Then,
![W - F_{p}sin(45\°) - F_{\mu} = m a_{y}\\ 30 \ N - (23 \ N)\frac{\sqrt{2} }{2}-13 \ N =3.14 \ kg (a_{y})](https://tex.z-dn.net/?f=W%20-%20%20F_%7Bp%7Dsin%2845%5C%C2%B0%29%20-%20F_%7B%5Cmu%7D%20%3D%20m%20a_%7By%7D%5C%5C%2030%20%5C%20N%20-%20%2823%20%5C%20N%29%5Cfrac%7B%5Csqrt%7B2%7D%20%7D%7B2%7D-13%20%5C%20N%20%3D3.14%20%5C%20kg%20%28a_%7By%7D%29)
Now, we solve for ![a_{y}](https://tex.z-dn.net/?f=a_%7By%7D)
![30-\frac{23\sqrt{2} }{2}-13=3.14 a_{y}\\ 17 - \frac{23\sqrt{2} }{2}=3.14 a_{y}\\\frac{34-23\sqrt{2}}{2}= 3.14 a_{y}\\a_{y}= \frac{34-23\sqrt{2}}{6.28} \approx 0.2 \ m/s^{2}](https://tex.z-dn.net/?f=30-%5Cfrac%7B23%5Csqrt%7B2%7D%20%7D%7B2%7D-13%3D3.14%20%20a_%7By%7D%5C%5C%2017%20-%20%5Cfrac%7B23%5Csqrt%7B2%7D%20%7D%7B2%7D%3D3.14%20%20a_%7By%7D%5C%5C%5Cfrac%7B34-23%5Csqrt%7B2%7D%7D%7B2%7D%3D%203.14%20%20a_%7By%7D%5C%5Ca_%7By%7D%3D%20%5Cfrac%7B34-23%5Csqrt%7B2%7D%7D%7B6.28%7D%20%5Capprox%200.2%20%5C%20m%2Fs%5E%7B2%7D)
Then, we use the following formula to find the speed after 2 seconds
![v_{f}=v_{0}-at \\ v_{f}=2.5 \ m/s - (0.2 \ m/s^{2})(2sec)=2.5- 0.4=2.1 \ m/s](https://tex.z-dn.net/?f=v_%7Bf%7D%3Dv_%7B0%7D-at%20%5C%5C%20v_%7Bf%7D%3D2.5%20%5C%20m%2Fs%20-%20%280.2%20%5C%20m%2Fs%5E%7B2%7D%29%282sec%29%3D2.5-%200.4%3D2.1%20%5C%20m%2Fs)
Now, if the friction force is
and the box falls with constant speed, what would be the magnitude of
to happen.
In this case, the sum of vertical forces would be
![\sum F_{y}=W-F_{p_{y} } -F_{\mu} =0](https://tex.z-dn.net/?f=%5Csum%20F_%7By%7D%3DW-F_%7Bp_%7By%7D%20%7D%20-F_%7B%5Cmu%7D%20%3D0)
Where ![F_{p_{y} }= F_{p}sin(45\°)](https://tex.z-dn.net/?f=F_%7Bp_%7By%7D%20%7D%3D%20F_%7Bp%7Dsin%2845%5C%C2%B0%29)
Notice that the net vertical force is zero, because there's no acceleratio, the box is moving at a constant speed.
![30 - F_{p}sin(45\°)-0.516 F_{p}=0](https://tex.z-dn.net/?f=30%20-%20F_%7Bp%7Dsin%2845%5C%C2%B0%29-0.516%20F_%7Bp%7D%3D0)
Then, we solve for ![F_{p}](https://tex.z-dn.net/?f=F_%7Bp%7D)
![30-0.71F_{p}-0.516 F_{p}=0\\30=1.226 F_{p}\\ F_{p}=\frac{30}{1.226} \approx 24.5 \ N](https://tex.z-dn.net/?f=30-0.71F_%7Bp%7D-0.516%20F_%7Bp%7D%3D0%5C%5C30%3D1.226%20%20F_%7Bp%7D%5C%5C%20F_%7Bp%7D%3D%5Cfrac%7B30%7D%7B1.226%7D%20%20%5Capprox%2024.5%20%5C%20N)
Therefore, the force needed to have no acceleration is 24.5 N.