That is a vector. It is a combination of direction and velocity. (You can think of Vector from Despicable Me to help you remember the term)
:)
Answer:
Explanation:
Electric field between plates
V / d
= 170 / ( 2 x 10⁻² )
= 8500 N/C
Force on electron in this field
= 8500 x 1.6 x 10⁻¹⁹
= 13600 x 10⁻¹⁹ N
Acceleration
= 13600 x 10⁻¹⁹ / 9.1 x 10⁻³¹
a = 1494.5 x 10¹² m /s²
s = .1 x 10⁻² m
v² = u² + 2as
= (2.9x 10⁵)²+ 2 x 1494.5 x 10¹² x .1 x 10⁻²
= 8.41 x 10¹⁰ + 299 x 10¹⁰
= (8.41 + 299 ) x 10¹⁰
v = 17.53 x 10⁵ m /s
<span>Extremely powerful single waves have no effect on ships at sea since the depth of water allows the energy to be distributed over hundreds and thousands of feet. In deep water, the bigger the wave, the faster it moves and the slower the surface changes height. As the wave gets into shallow waters, it slows down and can start to pile up to large heights.</span>
F(of spring)=230x=ma=3.5(5)=17.5=230x; x=0.07m.
Answer:
1408.685 KN/C
Explanation:
Given:
R = 0.45 m
σ = 175 μC/m²
P is located a distance a = 0.75 m
k = 8.99*10^9
- The Electric Field Strength E of a uniformly solid disk of charge at distance a perpendicular to disk is given by:

part a)
Electric Field strength at point P: a = 0.75 m

part b)
Since, R >> a, we can approximate a / R = 0 ,
Hence, E simplified relation becomes:

E = σ / 2*e_o
part c)
Since, a >> R, we can approximate. that the uniform disc of charge becomes a single point charge:
Electric Field strength due to point charge is:
E = k*δ*pi*R^2 / a^2
Since, R << a, Surface area = δ*pi
Hence,
E = (k*δ*pi/a^2)