The correct one is A. Technician Only.
The distribution of service information is regulated by <span>United States Environmental Protection Agency.
According to the rules, all vehicle manufacturers are required to make their service information available for everyone online for 'reasonable prices'.
Because of this, vehicle manufacturers started discontinuing the paper format.</span>
Answer:
(a) Time t = 16.46 sec
(b) Time t =13.466 sec
(c) Deceleration = 
Explanation:
(a) As the train starts from rest its initial velocity u = 0 m/sec
Acceleration 
Final speed v = 80 km/hr

From first equation of motion v =u+at
So 
(b) Now initial speed u = 22.22 m/sec
As finally train comes to rest so final speed v=0 m/sec
Deceleration 
So 
(c) We have given that initial velocity = 80 km/hr = 22.22 m/sec
Final velocity v = 0 m/sec
Time t = 8.30 sec
So acceleration is given by

As acceleration is negative so it is a deceleration
D. Budgeting time, avoiding stress, and prioritizing.
Answer:68.15m/s
Explanation:
<u><em>Given: </em></u>
v₁=15m/s
a=6.5m/s²
v₁=?
x=340m
<u><em>Formula:</em></u>
v₁²=v₁²+2a (x)
<u>Set up:</u>
=
<h2><u><em>
Solution:</em></u></h2><h2><u><em>
68.15m/s</em></u></h2>
<u />
Answer:
Total momentum = 50kgm/s
Explanation:
<u>Given the following data;</u>
Mass, M1 = 5kg
Mass, M2 = 7kg
Velocity, V1 = 10m/s
Velocity, V2 = 0m/s (since it's at rest).
To find the total momentum;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
The law of conservation of momentum states that the total linear momentum of any closed system would always remain constant with respect to time.
Total momentum = M1V1 + M2V2
Substituting into the equation, we have;
Total momentum = 5*10 + 7*0
Total momentum = 50 + 0
<em>Total momentum = 50 kgm/s</em>
<em>Therefore, the total momentum of the bowling ball and the putty after they collide is 50 kgm/s. </em>