1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fynjy0 [20]
3 years ago
6

When a unbalanced force act on an object , the object moves with what motion?

Physics
1 answer:
jeka943 years ago
3 0
There's no such thing as "an unbalanced force".
When the entire group of forces acting on an object is unbalanced,
meaning that the net force on the object is not zero, then the object
moves with accelerated motion . . . it may speed up, it may slow down,
or its speed may remain constant while its direction changes.
You might be interested in
Is an electrical current which comes from a battery
Oxana [17]
Hrdudikdodidbshshsjjsksks
6 0
3 years ago
A block of ice (m = 9 kg) at a temperature of T1 = 0 degrees C is placed out in the sun until it melts, and the temperature of t
jonny [76]

Answer:

a) An expression for the amount of energy, E_m, needed to melt the ice into water.

(E_m) = (m × Lf)

b) An expression for the total amount of energy, E_tot, to melt the ice and then bring the water to T2

(Total heat) = (m × Lf) + mc (T2 - T1)

c) 3,646,458 J = 3646.46 kJ

Explanation:

a) When a pure body changes its phase at meltimgbor boiling point, it does so at a constant temperature. When a pure body melts, the amount of heat responsible for this change is just given by a product od the mass of the body and the body's heat of fusion.

(E_m) = (m × Lf)

b) The Heat required to raise the temperature of a body from one temperature to another is given by the product of the mass of the body, its specific heat capacity and the temperature difference between the final point and the starting point.

(E_2) = mcΔT = mc (T2 - T1)

Total heat required to melt the ice at T1 = 0 and raise the temperature of the resulting water to T2 is then a sum of (E_m) + (E_2)

(Total heat) = (m × Lf) + mc (T2 - T1)

c) What is the energy in Joules?

(Total heat) = (m × Lf) + mc (T2 - T1)

m = mass of ice = resulting mass of water = 9 kg

Lf = latent heat of fusion = 334000 J/kg

c = Specific heat capacity of water = 4186 J/kg.K

T2 = final temperature of the water = 17°C

T1 = Initial temperature of the water = 0°C

Note that the units of temperature difference is the same for K and °C

(Total heat) = (m × Lf) + mc (T2 - T1)

Q = (9 × 334000) + [9 × 4186 × (17 - 0)]

Q = 3,006,000 + 640,458 = 3,646,458 J = 3646.46 kJ

Hope this Helps!!!

7 0
3 years ago
The force involved in falling of an apple from a tree is known as? (a) Magnetic force (b) electrostatic force (c) Contact force
musickatia [10]

Answer:

gravitational force

...........

6 0
3 years ago
Determine the total amount of heat, in joules, required to completely vaporize a 50.0-gram sample of h2o(?) at its boiling point
Tanzania [10]
In order to calculate the amount of energy required, we must first check the latent heat of vaporization of water from literature. The latent heat of vaporization of any substance is the amount of energy required per unit mass to convert that substance from a solid to a liquid. For water this is 2,260 J/g. We now use the formula:
Energy = mass * latent heat
Q = 50 * 2,260
Q = 113,000 J

113,000 Joules of heat energy are required.
3 0
3 years ago
A skater extends her arms, holding a 2 kg mass in each hand. She is rotating about a vertical axis at a given rate. She brings h
Usimov [2.4K]

Explanation:

It is known that relation between torque and angular acceleration is as follows.

                    \tau = I \times \alpha

and,       I = \sum mr^{2}

So,      I_{1} = 2 kg \times (1 m)^{2} + 2 kg \times (1 m)^{2}

                       = 4 kg m^{2}

      \tau_{1} = 4 kg m^{2} \times \alpha_{1}

     \tau_{2} = I_{2} \alpha_{2}

So,      I_{2} = 2 kg \times (0.5 m)^{2} + 2 kg \times (0.5 m)^{2}

                     = 1 kg m^{2}

 as \tau_{2} = I_{2} \alpha_{2}

                   = 1 kg m^{2} \times \alpha_{2}        

Hence,     \tau_{1} = \tau_{2}

                  4 \alpha_{1} = \alpha_{2}

            \alpha_{1} = \frac{1}{4} \alpha_{2}

Thus, we can conclude that the new rotation is \frac{1}{4} times that of the first rotation rate.

8 0
3 years ago
Other questions:
  • If a car accelerated from 5 m/s to 25 m/s in 10 seconds what is it's acceleration?
    11·1 answer
  • A 50kg skater at rest on a frictionless rink throws a 2kg ball, giving the ball a velocity of 10m/s. Which statement describes t
    14·1 answer
  • Two parallel plates that are initially uncharged are separated by 1.2 mm. What charge must be transferred from one plate to the
    5·1 answer
  • What will Al’s charge be when it comes an ion
    10·1 answer
  • A scuba diver measures an increase in pressure of around 10^5 Pa upon descending by 10 m, what is the change in force per square
    6·1 answer
  • A 1.6 Kg bird that is flying through the air has 220 J of kinetic energy. How fast is the bird flying?
    15·1 answer
  • If you applied a force of 200 Newtons to lift a box 2.20 meters above the floor, how much work would you be doing?
    6·1 answer
  • Calculate the period of wave whose frequency is 50Hz​
    7·2 answers
  • Your friend wants to join the school track team, and has asked for your help to determine how fast she can run. 4. What kind of
    10·1 answer
  • A spacecraft travels at 1.5 X 108 m/s relative to Earth. A process onboard the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!