The choices that should have accompanied this question were:
A. 1
<span>B. 2 </span>
<span>C. 3 </span>
<span>D. 4
</span>
My answer is B. 2.
Below is an explanation, I found while doing the research.
<span>Phosphate needs 3 electrons each totaling 6 electrons so each zinc will need to give up 2 electrons.
Phosphate wants to imitate the electron configuration of Argon because noble configurations are the most stable. With P getting the extra electrons the valence shell will be 3s2 3p6, which is the same as Argon. Without the extra electrons, the P valence shell looks like this 3s2 3p3, now you can see why each phosphorus wants 3 more electrons, that will make it 3s2 3p6, just like Argon.</span>
An element's atomic number shows the number of protons in its nucleus.
Answer:
The correct answer is A)
Overtime, the finches on the island adapted as a result of competition for resources.
Explanation:
The finches beaks adapted to the food source which was favored by natural selection. The successful finches that had the most useful beak for their island survived and therefore reproduced.
Cheers!
Answer:Hello How was your day been today :)
Explanation:
An ideal gas is cooled at constant pressure, option A. A. ΔH is less than (more negative) Δ E of the system.
∆H is the exchange in enthalpy from reactants to products A ΔHº charge represents an addition of electricity from the reaction and from the surroundings, resulting in an endothermic response. A horrible cost for ΔHº represents the removal of power from the reaction and into the surroundings and so the reaction is exothermic.
The enthalpy of a system can not be measured right away because of the fact the inner energy consists of additives that are unknown, now not effects available, or aren't of interest in thermodynamics.
Hence, the answer is option A.
Learn more about ideal gas here:-brainly.com/question/20348074
#SPJ4
Disclaimer:- your question is incomplete, please see below for the complete question.
A solid yields a mixture of gases in an exothermic reaction that takes place in a container of variable volume.
A. ΔH is less than (more negative) Δ E of the system.
B. ΔH is greater than ΔE of the system.
C. ΔH is equal to ΔE of the system.
D. can't be determined without more information