Answer:
1340.2MW
Explanation:
Hi!
To solve this problem follow the steps below!
1 finds the maximum maximum power, using the hydraulic power equation which is the product of the flow rate by height by the specific weight of fluid
W=αhQ
α=specific weight for water =9.81KN/m^3
h=height=220m
Q=flow=690m^3/s
W=(690)(220)(9.81)=1489158Kw=1489.16MW
2. Taking into account that the generator has a 90% efficiency, Find the real power by multiplying the ideal power by the efficiency of the electric generator
Wr=(0.9)(1489.16MW)=1340.2MW
the maximum possible electric power output is 1340.2MW
The rate of acceleration of the crate would be 1 m/s^2 because the equation for force is F=ma and when you plug in your numbers you get 10=10a so a=1
Answer:
when the momentum of the vehicle moving at 30 km/h is higher than the one from the vehicle moving at 60 km/h
Explanation:
It's much harder to stop a freight truck moving at 30 km/h than a hot wheels car moving at 60 km/h.