Yes I can do you want me to
Explanation:
First find the displacement in the x direction:
dₓ = 449 cos 66° + 1112 cos 169° + 1571 cos 26°
dₓ = 182.6 − 1091.6 + 1412
dₓ = 503 km
Next, find the displacement in the y direction:
dᵧ = 449 sin 66° + 1112 sin 169° + 1571 sin 26°
dᵧ = 410.2 + 212.2 + 688.7
dᵧ = 1311 km
The magnitude is:
d² = dₓ² + dᵧ²
d² = (503)² + (1311)²
d = 1404 km
The angle is:
tan θ = dᵧ / dₓ
tan θ = 1311 / 503
tan θ = 2.61
θ = 69°
1404 km and 69° north of east from New Orleans is approximately Toledo.
Gender....................
Answer:
Explanation:
Given that:
width b=100mm
depth h=150 mm
length L=2 m =200mm
point load P =500 N
Calculate moment of inertia

Point C is subjected to bending moment
Calculate the bending moment of point C
M = P x 1.5
= 500 x 1.5
= 750 N.m
M = 750 × 10³ N.mm
Calculate bending stress at point C

Calculate the first moment of area below point C

Now calculate shear stress at point C


Calculate the principal stress at point C
![\sigma_{1,2}=\frac{\sigma_x+\sigma_y}{2} \pm\sqrt{(\frac{\sigma_x-\sigma_y}{2} ) + (\tau)^2} \\\\=\frac{666.67+0}{2} \pm\sqrt{(\frac{666.67-0}{2} )^2 \pm(44.44)^2} \ [ \sigma_y=0]\\\\=333.33\pm336.28\\\\ \sigma_1=333.33+336.28\\=669.61KPa\\\\\sigma_2=333.33-336.28\\=-2.95KPa](https://tex.z-dn.net/?f=%5Csigma_%7B1%2C2%7D%3D%5Cfrac%7B%5Csigma_x%2B%5Csigma_y%7D%7B2%7D%20%5Cpm%5Csqrt%7B%28%5Cfrac%7B%5Csigma_x-%5Csigma_y%7D%7B2%7D%20%29%20%2B%20%28%5Ctau%29%5E2%7D%20%5C%5C%5C%5C%3D%5Cfrac%7B666.67%2B0%7D%7B2%7D%20%5Cpm%5Csqrt%7B%28%5Cfrac%7B666.67-0%7D%7B2%7D%20%29%5E2%20%5Cpm%2844.44%29%5E2%7D%20%5C%20%5B%20%5Csigma_y%3D0%5D%5C%5C%5C%5C%3D333.33%5Cpm336.28%5C%5C%5C%5C%20%5Csigma_1%3D333.33%2B336.28%5C%5C%3D669.61KPa%5C%5C%5C%5C%5Csigma_2%3D333.33-336.28%5C%5C%3D-2.95KPa)
Calculate the maximum shear stress at piont C
