Answer:
i think it is the last option a pure substance that can be separated into different elements by chemical means
Explanation:
Given the balanced equation:
( Reaction type : double replacement)
CaF2 + H2SO4 → CaSO4 + 2HFI
We can determine the number of grams prepared from the quantity of 75.0 H2SO4, and 63.0g of CaF2 by converting these grams to moles per substance.
This can be done by evaluating the atomic mass of each element of the substance, and totaling it to find the molecular mass.
For H2SO4 or hydrogen sulfate it's molecular mass is the sum of the quantity of atomic mass per element. H×2 + S×1 + O×4 = ≈1.01×2 + ≈32.06×1 + ≈16×4 = 2.02 + 32.06 + 64 = 98.08 u (Dalton's or Da) or g / mol.
For CaF2 or calcium fluoride, it's molecular mass adds 1 atomic mass of calcium and 2 atomic masses of fluoride due to the number of atoms.
Ca×1 + F×2 = ≈40.07×1 + ≈19×2 = 40.08 + 38 = 78.07 u (Da or Dalton's) or g / mol.
Answer:
phosphorus - least similar to barium
beryllium - most similar to barium
Explanation:
The formula of the chloride formed between barium and chlorine is BaCl2.
Barium is a metallic element and has the valency of +2. Beryllium is also a group two metal with a valency of +2. Hence the compound formed between beryllium and chlorine is BeCl2
Phosphorus is a nonmetal and forms a completely different chloride from BaCl2. The chloride of phosphorus is PCl5 and PCl3. These are least similar to BaCl2
Answer:
H2 + I2 → 2 HI.
Explanation:
Hydrogen iodide is a diatomic gas which can be readily formed from the direct combination of the elements involved which is hydrogen and iodine. Both elements can be combined by irradiating the mixture with an electromagnetic radiation that has a wavelength which is equal to that needed to break the iodine molecule bond between the two iodine atoms
Answer:
Mass = 182.4 g
Explanation:
Given data:
Number of moles of Al₂O₃ = 3.80 mol
Mass of oxygen required = ?
Solution:
Chemical equation:
4Al + 3O₂ → 2Al₂O₃
Now we will compare the moles of aluminum oxide and oxygen.
Al₂O₃ : O₂
2 : 3
3.80 : 3/2×3.80 = 5.7
Mass of oxygen:
Mass = number of moles × molar mass
Mass = 5.7 mol × 32 g/mol
Mass = 182.4 g