Answer:
B
Explanation:
Heating a piece of iron until it glows.
The pressure of the gas used in the weather balloon increases to expand the balloon.
Explanation:
- Weather balloons contain the boxes where the weather measurement instruments are present that is attached to the large balloon.
- Weather balloon uses gases like Hydrogen or Helium. When the weather balloon rises to the atmosphere, the air pressure decreases. This leads to the increase in the pressure of hydrogen or Helium gas used in the weather balloon. This expands the balloon.
- The gas particles hits the balloon container and generates the pressure. The increase of pressure thus helps the weather balloon to move in a constant speed through the atmosphere.
A spectrum that includes all colors and doesn't have
any gaps in it is a continuous spectrum.
Answer:
Empirical formula is CH₄
Molecular formula = C₂H₈
Explanation:
Mass of carbon = 37.5 g
Mass of hydrogen = 12.5 g
Molecular weight = 32 g/mol
Molecular formula = ?
Empirical formula = ?
Solution:
Number of gram atoms of C = 37.5 g /12g/mol = 3.125
Number of gram atoms of H = 12.5 g / 1.008 g/mol= 12.4
Atomic ratio:
C : H
3.125/3.125 : 12.4 /3.125
1 : 4
C : H : = 1 : 4
Empirical formula is CH₄
Molecular formula:
Molecular formula = n (empirical formula)
n = molar mass of compound / empirical formula mass
n = 32 / 16
n = 2
Molecular formula = n (empirical formula)
Molecular formula = 2 ( CH₄)
Molecular formula = C₂H₈
Answer:
108.43 grams KNO₃
Explanation:
To solve this problem we use the formula:
Where
- ΔT is the temperature difference (14.5 K)
- Kf is the cryoscopic constant (1.86 K·m⁻¹)
- b is the molality of the solution (moles KNO₃ per kg of water)
- and<em> i</em> is the van't Hoff factor (2 for KNO₃)
We <u>solve for b</u>:
- 14.5 K = 1.86 K·m⁻¹ * b * 2
Using the given volume of water and its density (aprx. 1 g/mL) we <u>calculate the necessary moles of KNO₃</u>:
- 275 mL water ≅ 275 g water
- moles KNO₃ = molality * kg water = 3.90 * 0.275
- moles KNO₃ = 1.0725 moles KNO₃
Finally we <u>convert KNO₃ moles to grams</u>, using its molecular weight:
- 1.0725 moles KNO₃ * 101.103 g/mol = 108.43 grams KNO₃