Answer:
Iodine
Explanation:
I hope this answer will help you
Answer:
True.
Explanation:
You didn't provide an answer, but I'm assuming this is a T/F question.
Answer:
A. c. Keq=[H2]^2[S2]/[H2S]^2
B. b. Keq=[COCl2]/[CO][Cl2]
Explanation:
Hello,
In this case, considering the law of mass action which states that the equilibrium expression is written in terms of the concentration of products divided by the concentration of reactants considering the stoichiometric coefficients as powers we obtain:
A. For the reaction:

The equilibrium expression is:
![Keq=\frac{[H_2]^2[S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BH_2%5D%5E2%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)
Therefore, answer is c. Keq=[H2]^2[S2]/[H2S]^2.
B. For the reaction:

The equilibrium expression is:
![Keq=\frac{[COCl_2]}{[CO][Cl_2]}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BCOCl_2%5D%7D%7B%5BCO%5D%5BCl_2%5D%7D)
Therefore, answer is b. Keq=[COCl2]/[CO][Cl2].
Regards.