Answer:
T₂ = 123.9 N, θ = 66.2º
Explanation:
To solve this exercise we use the law of equilibrium, since the diaphragm does not appear, let's use the adjoint to see the forces in the system.
The tension T1 = 100 N, we create a reference frame centered on the pole
X axis
T₁ₓ -
= 0
T_{2x}= T₁ₓ
Y axis y
T_{1y} + T_{2y} - 200N = 0
T_{2y} = 200 -T_{1y}
let's use trigonometry to find the component of the stresses
sin 60 = T_{1y} / T₁
cos 60 = t₁ₓ / T₁
T_{1y} = T₁ sin 60
T1x = T₁ cos 60
T_{1y}y = 100 sin 60 = 86.6 N
T₁ₓ = 100 cos 60 = 50 N
for voltage 2 it is done in the same way
T_{2y} = T₂ sin θ
T₂ₓ = T₂ cos θ
we substitute
T₂ sin θ= 200 - 86.6 = 113.4
T₂ cos θ = 50 (1)
to solve the system we divide the two equations
tan θ = 113.4 / 50
θ = tan⁻¹ 2,268
θ = 66.2º
we caption in equation 1
T₂ cos 66.2 = 50
T₂ = 50 / cos 66.2
T₂ = 123.9 N
Answer:
Time will be 19 ms so option (a) is correct option
Explanation:
We have given that mass of wire m = 50 gram = 0.5 kg
Frequency f = 810 Hz
Wavelength = 0.4 m
Velocity is given by

Amplitude is given as d = 6 m
So time 
So option (a) is correct option
Centripetal acceleration is (speed-squared) / (radius)
CA = (6 m/s)² / (9 m)
CA = (36 m²/s²) / (9 m)
CA = (36/9) (m²/m·s²)
<em>Centripetal acceleration = 4 m/s²</em>
Answer:

Explanation:
-The chemical formula for Molybdenum (V) Dichromate is 
-There are 21 moles of oxygen per one mole of Molybdenum (V) Dichromate
-We apply Avogadro's constant to find the number of atoms of oxygen:

Hence, there are
Answer:Let m = mass of asteroid y.Because asteroid y has three times the mass of asteroid z, the mass of asteroid z is m/3.Given:F = 6.2x10⁸ Nd = 2100 km = 2.1x10⁶ mNote thatG = 6.67408x10⁻¹¹ m³/(kg-s²)The gravitational force between the asteroids isF = (G*m*(m/3))/d² = (Gm²)/(3d²)orm² = (3Fd²)/G = [(3*(6.2x10⁸ N)*(2.1x10⁶ m)²]/(6.67408x10⁻¹¹ m³/(kg-s²)) = 1.229x10³² kg²m = 1.1086x10¹⁶ kg = 1.1x10¹⁶ kg (approx)Answer: 1.1x10¹⁶ kg
Explanation: