Answer:
i) 0.7
ii) 1.39
iii) 0.6
Next time, when compiling a Physics question, ensure you put the unit of each measurement.
Explanation:
i) T = time of flight = 
where u = speed = 4, A = 60 and g = acceleration due to gravity = 10 (It is a constant);
Subsituting the values, we have: T =
= 0.7
ii) distance travel = Range = R = 
where u = speed = 4, A = 60 and g = acceleration due to gravity = 10 (It is a constant);
Subsituting values, we have: R =
= 1.39
iii) Maximum Height = H = 
where u = speed = 4, A = 60 and g = acceleration due to gravity = 10 (It is a constant);
Subsituting values, we have:
= 0.6
Answer:
a. 
b.
must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
is the time taken to stop after braking
Explanation:
Given:
- speed of leading car,

- speed of lagging car,

- distance between the cars,

- deceleration of the leading car after braking,

a.
Time taken by the car to stop:

where:
, final velocity after braking
time taken


b.
using the eq. of motion for the given condition:

where:
final velocity of the chasing car after braking = 0
acceleration of the chasing car after braking

must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
time taken by the chasing car to stop:


is the time taken to stop after braking
Answer:
A, total.
<em>The </em><em>total</em><em> energy in a mechanical system is determined by adding the potential and kinetic enters together.</em>
<em />
<u><em>i hope this helped at all.</em></u>
<em />
Answer:
7500 Newtons
Explanation:
Mass of the sportscar= 1500 kg
Acceleration of the sportscar= 5m/s^2
Hence, let the Force acting on it be F
