Molality is obtained by dividing the number of moles of solute by the mass in kilogram of the solvent. None of the dimensions is dependent in temperature. On the other hand, molarity is obtained by dividing the number of moles of solute by the volume in liters of the solution. Volume is temperature dependent.
Answer:
The most common reason for alloying is to increase the strength of a metal. This requires that barriers to slip be distributed uniformly throughout the crystalline grains. On the finest scale, this is done by dissolving alloying agents in the metal matrix (a procedure known as solid solution hardening
Explanation:
hey why u search i have book that answer i got mark as brainlist please okkkkkk
Answer:
760 mmHg
Explanation:
Step 1: Given data
- Partial pressure of nitrogen (pN₂): 592 mmHg
- Partial pressure of oxygen (pO₂): 160 mmHg
- Partial pressure of argon (pAr): 7 mmHg
- Partial pressure of the trace gas (pt): 1 mmHg
Step 2: Calculate the atmospheric pressure
Since air is a gaseous mixture, the atmospheric pressure is equal to the sum of the gases that compose it.
P = pN₂ + pO₂ + pAr + pt = 592 mmHg + 160 mmHg + 7 mmHg + 1 mmHg = 760 mmHg
Answer:
Explanation:
3.
Knowns: 100mL of solution; concentration of 0.7M
Unknown: number of moles
Equation: number of moles = volume * concentration
Plug and Chug: number of moles = 100/1000 * 0.7 = 0.07 mole
Final Answer: 0.07mole
2.
Knowns: 5.50L of solution; concentration of 0.400M
Unknown: number of moles
Equation: number of moles = volume * concentration
Plug and Chug: number of moles = 5.5 * 0.4 = 2.20 mole
Final Answer: 2.20 mole